Decomposing Complete 3-Uniform Hypergraph $K^{(3)}_{34}$ into 7-cycles

Meiling Guan1,a, Chunlei Xu1,b and Jirimutu1,c*

1College of Mathematics of Inner Mongolia University for the Nationalities, Tongliao, China 028043
$^{a}1375717661@qq.com$, $^{b}xuchunlei1981@sina.cn$, $^{c*jrmt@sina.com}$

Keywords: Uniform hypergraph; 7-cycle; Cycle decomposition

Abstract. On the basis of the definition of Hamiltonian cycle defined by Katona-Kierstead and Jianfang Wang independently. Some domestic and foreign researchers study the decomposition of complete 3-uniform hypergraph $K^{(3)}_n$ into Hamiltonian cycles and not Hamiltonian cycles. Especially, Bailey Stevens using Clique-finding the decomposition of $K^{(3)}_n$ into Hamiltonian cycles for $K^{(3)}_7$, $K^{(3)}_8$. Meszka-Rosa showed that Hamiltonian decompositions of $K^{(3)}_n$ for all admissible $n \leq 32$. Meszka-Rosa proved that a decomposition of $K^{(3)}_n$ into 5-cycles has been presented for all admissible $n \leq 17$, and for all $n = 4^m + 1$, m is a positive integer. In general, the existence of a decomposition into $l(\geq 5)$-cycles remains open. The authors have given the decomposition of $K^{(3)}_n$ into 7-cycles for $n \in \{7, 8, 14, 16, 22, 23, 29, 37, 43\}$ and has showed if $K^{(3)}_n$ can be decomposition into 7-cycles, then $K^{(3)}_n$ can be decomposition into 7-cycles. In this paper, a decomposition of $K^{(3)}_{34}$ into 7-cycles is proved using the method of edge-partition and cycle sequence proposed by Jirimutu.

Introduction

Katona-Kierstead and Jianfang Wang gave the definition of Hamiltonian chain and Hamiltonian cycle in [1-2], independently. In fact, two different definitions of Hamiltonian chain and Hamiltonian cycle are the same. Some researchers studied the decomposition of complete 3-uniform hypergraph $K^{(3)}_n$ into Hamiltonian cycles and not Hamiltonian cycles in [2-9]. Especially, Bailey Stevens [3] used clique-finding the decomposition of $K^{(3)}_n$ into Hamiltonian cycles for $K^{(3)}_7$, $K^{(3)}_8$ and Meszka-Rosa [4] showed that Hamiltonian decompositions of $K^{(3)}_n$ for all admissible $n \leq 32$. Huo [10] obtained some results for all admissible $32 \leq n \leq 46$ and $n \neq 43$ using the method of edge-partition and cycle sequence. The problem of decomposing the complete 3-uniform hypergraph into 5-cycles and $l(\geq 5)$ are open. Meszka-Rosa [4] proved that a decomposition of $K^{(3)}_n$ into 5-cycles has been presented for all admissible $n \leq 17$, and for all $n = 4^m + 1$, m is a positive integer. Meszka-Rosa [4] have introduced a necessary condition for the existence of 5-cycles such a decomposition is that $n \equiv 1, 2, 5, 7, 10, 11(\text{mod} 15)$. Li [11] find a decomposition of $K^{(3)}_n$ into 5-cycles for $n \in \{5, 7, 10, 11, 16, 17, 20, 22, 26\}$ and has showed if $K^{(3)}_n$ can be decomposition into 5-cycles, then $K^{(3)}_{3n}$ can be decomposed into 5-cycles. Li and Hong in [11][12] find a decomposition of $K^{(3)}_n$ into 7-cycles for $n \in \{7, 8, 14, 16, 22, 23, 29, 37, 43\}$ and Li [13] has showed if $K^{(3)}_n$ can be decomposition into 7-cycles, then $K^{(3)}_{7n}$ can be decomposition into 7-cycles. In this paper we find $K^{(3)}_{34}$ decomposed into 7-cycles.
Preliminaries

A hypergraph \(H = (V, E) \) consists of a finite set \(V \) of vertices with a family \(E \) of subsets of \(V \), called hyperedges (or simply edges). If each (hyper)edge has size \(k \), we say that \(H \) is a \(k \)-uniform hypergraph. In particular, the complete \(k \)-uniform hypergraph on \(n \) vertices has all \(k \)-subsets of \(\{0,1,\ldots,n-1\} \) as edges, denoted this by \(K_n^{(k)} \). The (hyper)edges of \(K_n^{(3)} \) is denoted by \(e(K_n^{(3)}) \).

Definition 1. Let \(H = (V, E) \) be a \(k \)-uniform hypergraph. A \(l \)-cycle in \(H \) is a cyclic sequence \((v_0, v_1, \ldots, v_{l-1}) \) where \(3 \leq k \leq l-1 \) such that each consecutive \(k \)-tuple of vertices is an edge of \(H \).

Definition 2. A \(l \)-cycle decomposition of \(H \) is a partition of the set of (hyper)edges of \(H \) into mutually-disjoint \(l \)-cycles.

We introduce the method of edge-partition and cycle-model in [5].

Definition 3. [4] Let \(T = \{a, b, c\} \) be a triple of distinct elements of \(\mathbb{Z}_n \). Then its difference pattern \(\pi(T) \), is the equivalence class of ordered triples containing cyclic rotations of \((b-a, c-b, a-c) \) and \((c-a, b-c, a-b) \) (where the differences are taken modulo \(n \)).

Clearly, the three differences sum to zero. Therefore if we know that the first two differences are \(x \) and \(y \), then the third is \(n-x-y \). Omit the third number, we can get a difference pair. Using edge-partition of \(K_n^{(3)} \) in paper [5], all difference pairs of hypergraphs \(K_n^{(3)} \) may be obtained. Let \(Z \) be the set of integers, \(n \) be a fixed positive integer, and \(\mathbb{Z}_n = \{0,1,\ldots,n-1\} \). Let

\[
D_{all}(n) = \{ (k_1, k_2) \mid 1 \leq k_1, k_2 \leq n-1, \text{ and } k_1 + k_2 \neq n \}
\]

\[
D(n) = D_\ell(n) \cup D_k(n) \cup D_m(n)
\]

where

\[
D_\ell(n) = \left\{ (k_1, k_2) \in D_{all}(n) \mid k_1 = k_2 = k, \quad \exists 1 \leq k < \frac{n}{2} \right\}
\]

\[
D_k(n) = \left\{ (k_1, k_2) \in D_{all}(n) \mid 1 \leq k_1 < k_2 < \frac{n-k_1}{2} \right\}
\]

\[
D_m(n) = \left\{ (k_2, k_1) \in D_{all}(n) \mid (k_1, k_2) \in D_\ell(n) \right\}.
\]

Given a difference pair \((k_1, k_2) \in D_{all}(n) \) and an integer \(m \in \mathbb{Z}_n \), define a subhypergraph of \(K_n^{(3)} \) generated by \((k_1, k_2) \) as follows:

\[
E(m; k_1, k_2) = \{ m, m+k_1, m+k_1+k_2 \} \pmod{n}
\]

Denoted by

\[
H(k_1, k_2) = \{E(m; k_1, k_2) \mid m \in \mathbb{Z}_n \}
\]

where the addition is performed modulo \(n \).

Lemma 1. [5] Let \((k_1, k_2) \) and \((k'_1, k'_2) \) be arbitrary two distinct difference pairs in \(D_{all}(n) \), we have either \(H(k_1, k_2) \cap H(k'_1, k'_2) = \emptyset \) or \(H(k_1, k_2) = H(k'_1, k'_2) \), and a necessary and sufficient condition for the second equation is
\[(k_1, k_2) \equiv \begin{cases}
(k_1', k_2') & \text{or} \\
(k_1' + k_2', -k_2') & \text{or} \\
(-k_1', k_1' + k_2') & \text{or} \\
(k_2', -k_1' - k_2') & \text{or} \\
(-k_1' - k_2', k_1') & \text{or} \\
(-k_1', -k_2') & \text{or} \\
(k_1, k_2) & \text{or}
\end{cases} \pmod{n}.
\]

Definition 4[5]. Let \((k_1, k_2)\) and \((k_1', k_2')\) be arbitrary two distinct difference pairs in \(D_{all}(n)\). We say \((k_1, k_2)\) and \((k_1', k_2')\) are equivalent if \(H(k_1, k_2) = H(k_1', k_2')\). This is denoted by \((k_1, k_2) \sim (k_1', k_2')\).

Theorem 2[5]. (Edge-partition of \(K_n^{(3)}\)) For any \(K_n^{(3)}\),
\[
\mathcal{E}(K_n^{(3)}) = \bigcup_{(k_1, k_2) \in D(n)} H(k_1, k_2),
\]
where \((k_1, k_2) \in D(n)\). If \(k_1 \neq k_2\), for convenience, we use \((k_1, k_2)\) denote \((k_1, k_2)\) and \((k_2, k_1)\).

Definition 5. Let \(n\) be a positive integer, for any \(0 \leq i, j \leq l - 1\), \((k_i, k_{i+1}) \in D_{all}(n)\), \((k_i, k_{i+1})\) and \((k_j, k_{j+1})\) are inequitable when \(i \neq j\), obtain that \((k_0, k_1, \ldots, k_{l-1})\) be a sequence on \(D_{all}(n)\). The sequence \((k_0, k_1, \ldots, k_{l-1})\) induces the cycle sequence
\[
(r_0, r_1, \ldots, r_{l-1}) \quad (1)
\]
Sequence Eq.1 satisfies the following two conditions:

\(a\). \(r_0 = 0, \sum_{i=0}^{l} k_i \equiv r_j \pmod{n}, r_j = r_0 = 0.\)

\(b\). For any \(i, j (i \neq j)\), \(r_i \neq r_j\).

Then \((r_0, r_1, \ldots, r_{l-1})\) is a \(l\)-cycle, denoted by \(C_l = (r_0, r_1, \ldots, r_{l-1})\), called base cycle. According to the difference pattern \(\pi(T)\), obviously, we obtained the set of \(l\)-cycles \(\{C_i + i \mid i \in \mathbb{Z}_n\}\), where \(C_i + i = (r_0 + i, r_1 + i, \ldots, r_{l-1} + i) \pmod{n} \). In particular, if \(l = n\), \((r_0, r_1, \ldots, r_{l-1})\) is a base Hamiltonian cycle, denoted by \(C_n = (r_0, r_1, \ldots, r_{n-1})\).

Lemma 3. Let \(n\) be a positive integer, for any \(0 \leq i, j \leq l - 1\), \((k_i, k_{i+1}) \in D_{all}(n)\), \((k_i, k_{i+1})\) and \((k_j, k_{j+1})\) are inequitable when \(i \neq j\), obtain that \((k_0, k_1, \ldots, k_{l-1})\) be a sequence on \(D_{all}(n)\).

Then
\[
H(k_0, k_1, \ldots, k_{l-1}) = \bigcup_{i=0}^{l-1} H(k_i, k_{i+1}),
\]
where \(k_0 = k_0\).

Decomposing \(K_n^{(3)}\) Into 7-cycles

Theorem 1. \(K_n^{(3)}\) can be decomposed into 7-cycles.
Proof. We can decompose the edges of \(K_{44}^{(3)} \) into 1892 7-cycles produced by 43-base 7-cycles as follows: we have since \(|e(K_{44}^{(3)})| = \binom{44}{7} = 13244 \) edges and 7 \(\mid 13244 \), we have

\[
D(44) = \{ (1,1),(2,2),(3,3),(4,4),(5,5), (6,6),(7,7),(8,8),(9,9),(10,10),(11,11),(12,12), (13,13),(14,14),(15,15),(16,16),(17,17),(18,18),(19,19),(20,20),(21,21),(22,22), \ldots \}
\]

Now, we need to find the decomposition of \(K_{44}^{(3)} \). On \(D(44) \), according to Definition 5, we obtain 43 sequences as follows:

\[
\begin{align*}
(1) & \quad (1,1,2,1,3,1,35) \\
(2) & \quad (1,4,42,5,38,5,37) \\
(3) & \quad (1,7,40,42,8,2,32) \\
(4) & \quad (1,9,37,4,1,10,26) \\
(5) & \quad (1,12,34,2,9,1,29) \\
(6) & \quad (1,13,33,3,2,12,24) \\
(7) & \quad (1,15,31,3,12,23) \\
(8) & \quad (1,16,30,3,5,8,25) \\
(9) & \quad (1,21,25,2,15,3,21) \\
(10) & \quad (1,23,23,3,6,13,19) \\
(11) & \quad (1,25,21,3,7,14,17) \\
(12) & \quad (1,27,19,3,9,14,15) \\
(13) & \quad (1,30,16,2,16,11,12) \\
(14) & \quad (1,32,14,3,13,15,10) \\
(15) & \quad (1,36,11,2,20,16,6) \\
(16) & \quad (2,20,27,40,6,17,20) \\
(17) & \quad (2,24,24,39,7,21,15) \\
(18) & \quad (2,29,19,39,8,24,11) \\
(19) & \quad (2,35,12,40,8,29,6) \\
(20) & \quad (3,14,34,38,9,8,26) \\
(21) & \quad (3,16,32,8,30,10,11,22) \\
(22) & \quad (3,23,25,38,11,15,17) \\
(23) & \quad (3,25,23,38,12,18,13) \\
(24) & \quad (3,29,20,37,11,25,7) \\
(25) & \quad (3,30,18,38,13,20,10) \\
(26) & \quad (4,5,4,6,30,6,33) \\
(27) & \quad (4,8,5,28,5,14,24) \\
(28) & \quad (4,9,4,28,7,27,29) \\
(29) & \quad (4,13,38,34,5,16,22) \\
(30) & \quad (4,14,35,36,16,9,18) \\
(31) & \quad (4,15,34,37,12,14,16) \\
(32) & \quad (4,23,26,36,21,12,10) \\
(33) & \quad (4,27,22,37,22,9,11) \\
(34) & \quad (5,7,11,27,10,10,18) \\
(35) & \quad (5,12,5,23,11,19,13) \\
(36) & \quad (5,13,6,23,29,34,22) \\
(37) & \quad (5,19,9,15,13,17,10) \\
(38) & \quad (5,30,24,14,9,26,24) \\
(39) & \quad (6,15,9,25,12,12,9) \\
(40) & \quad (6,27,36,22,14,7,20) \\
(41) & \quad (7,13,10,16,20,13,9) \\
(42) & \quad (7,16,12,17,11,7,18) \\
(43) & \quad (8,19,11,18,9,10,13)
\end{align*}
\]

Let \(D \) is a collection of the 43 sequences above. Thus they correspond to 43-base 7-cycles:
By the method of edge-partition, we obtain the decomposition of $K_{44}^{(3)}$ into 1892 7-cycles, that is

$$
\mathcal{E}(K_{44}^{(3)}) = \bigcup_{(k_1, k_2) \in D(44)} H(k_1, k_2) = \bigcup_{(k_i, k_i, \ldots, k_6) \in D_{44}(44)} H(k_1, k_2, \ldots, k_6)
$$

$$
= \bigcup_{j=1}^{43} \left\{ C_{7(i)} + j, j \in \mathbb{Z}_{44} \right\}
$$

where $C_{7(i)} = (r_0, r_1, \ldots, r_6)$, $C_{7(i)} + j = \{r_0 + j, r_1 + j, \ldots, r_6 + j\}$ (mod 44).

Hence we obtain the decomposition of $K_{44}^{(3)}$ into 1892 7-cycles.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (NO.11161032) Inner Mongolia University for the Nationalities graduate student research innovation project (NMDSS1730).

References