Vibration Control of Flexible Manipulator Using Filtered Inverse Controller

Waweru Njeri*, Minoru Sasaki and Kojiro Matsushita
Department of Mechanical Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
*Corresponding author

Abstract—Our paper presents an inverse system based controller for the precise positioning of the manipulator end-effector. Lately, flexible manipulators are popular owing to their numerous advantages; light weight, low power consumption etc. However, due to their flexible nature, precise positioning of the end effector is still a serious challenge because of the accompanying link vibrations. This limits their applications to those fields where precise positioning or response time is not a factor. Inverse model was developed based on a mathematical model developed, linearized in Maple/Maplesim and exported to MATLAB. Practical experiments were carried out in dSPACE environment. Results show that precise positioning with minimal vibration can be achieved using this technique.

Keywords—inverse system; internal dynamics; vibration

I. INTRODUCTION

The need of multilink manipulator is due to advantages such as; high speed, cheap due to less materials requirements than their rigid counterparts, light in weight which in turn calls for small actuators, energy efficiency, mobility, swift and high payload to weight ratio[1],[2]. Flexible manipulators find applications in areas like soldering of computer motherboard, precision welding and positioning of the read-write head of a hard drive to mention just a few. For a flexible manipulator, this is even more difficult owing to the flexible nature of the links. At high operational speed, the inertial forces increases leading to vibration of the links. This brings about delays in the precise positioning of the end-effector. Also, being highly coupled, link vibrations become more severe with additional links. A lot of research has been done on this front by the use of methods such as the application of fixed digital filters. Also, adaptive filters to filter out vibration modes have been proposed[3]. In the same respect, Proportional Integral Differential(PID) controllers have been employed to mitigate these notorious problems[4].

In theory, there are two types of inversion: right and left inversion as shown in Figure 1. A left inversion will yield the input signal to the plant when excited from the knowledge of its output signal as shown in Figure 1a whereas in right inversion, yields the necessary input to the plant for the desired plant output as shown in Figure 1b[5]. General applications of Left and right inversion are fault detection and the feed forward control respectively. The research reported in this paper is based on the right inversion.

Consider a generic dynamical system \(\Sigma \) where \(u(t) \) and \(y(t) \) respectively represent the inputs and outputs. The Model inversion is a procedure to find the feedforward input function \(u_{ff} \) to yield the given desired output function \(y_d(t) \) of the system under consideration. In other words, it is like to build an inverse of \(\Sigma \) where the input corresponds to the original output and vice versa [6] - [9].

Inversion of dynamic system is not a new idea but has been there since early sixties first formulated by Brocket and Mesarovic in 1965[10]. Silverman[7] later developed an iterative inversion schemes by successive differentiation and partitioning the output variable. Massey and Sain in the same period developed a different scheme from that of Silverman[8]. In the decade that followed, Moylan [5] refined the previous work and developed another algorithm. Hirschorn extended the procedures earlier developed for linear system inversion to nonlinear systems.

Key concerns in the development of an inverse model are the existence of the inverse model and the stability of the resulting inverse model. Given a linear time-invariant(LTI) single-input single-output (SISO) system expressed by the transfer function representation, the inversion procedure is equivalent to exchanging between the numerator and the denominator. The resulting transfer function is stable if the zeros of the system are stable. In other words, the inverse is stable if the zeros of the system under consideration are on the open left hand side of the s-plane, i.e. the system is minimum phase plant, otherwise if the system is non-minimum phase it results in an unstable inverse.

Classical techniques however were limited to minimum phase systems. For non-minimum phase systems, the yielded inverse is unstable. Devasia[11], an author who has done remarkable research in inversion theory, especially for non-minimum phase systems, successfully managed to invert a non-minimum phase system by isolating the internal dynamic and decomposing them into stable and unstable dynamics. The stable dynamics are solved by integrating forward in time...
where the unstable one solved to preview technique. Detailed mathematical presentation of the preview based technique can be found in [12]-[14]. For non-hyperbolic systems, devasia proposed a solution in [12]. However, this is only applicable to systems which are completely controllable. To this end, we developed an inverse controller inherent to the work by devasia. Pole placement technique was used to stabilize the internal dynamics of the non-hyperbolic and uncontrollable plant. Having been augmented with lowpass filters, the inverse model is used as a feedforward controller to a two link 3D flexible manipulator. Results presented in section V shows significant reduction in the link strain with the employment of the inverse controller.

II. MODEL FORMULATION AND VALIDATION

The plant is three dimensional two link flexible manipulator structured as in Figure 2. It has three rotary joints driven by dc servo motors and two flexible links l_1 and l_2. The control system consists of a computer, AC and DA converters all managed by dSPACE and Matlab softwares. Measure of angular position, velocity is achieved by encoders places in the servomotors while link strain measurement is done by strain gauges positioned at the bottom of each link. The manipulator was modelled and linearized in Maple/Maplesim. A mathematical model of the plant was validated with the performance of the actual plant. Then, the inverse model was developed based on this minimal state space representation of the manipulator.

III. DEVELOPMENT OF THE INVERSE SYSTEM

Consider a LTI continuous time square system Σ, let the triplet A, B and C be a minimal state-space representation. It is assumed that the system is stable or stabilized by negative feedback

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

Where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^p$, $y = (y_1, y_2, \ldots, y_p)^T \in \mathbb{R}^p$, $A \in \mathbb{R}^{nxn}$, $B \in \mathbb{R}^{nxp}$ and $C \in \mathbb{R}^{p \times n}$. If C_i denotes the i_{th} row of the output matrix C, the system is said to have a well-defined relative degree $r = (r_1, r_2, \ldots, r_p)^T$ if $C_iA^jB = 0, \forall 1 < r_i - 1, 1 \leq i \leq p [15]$.

Differentiating i_{th} output r_i times in time yields

$$y^{(r_i)} = C_kA^{(r_k)}x + C_kA^{(r_k-1)}Bu$$

where C_k is the k_{th} row of the output matrix C and $1 < k < p$. In vector form

$$y^{(r)}(t) = A_x x(t) + B_y u(t)$$

where

$$y^{(r)}(t) \equiv \left[y_1^{(r_1)}, y_2^{(r_2)}, \ldots, y_p^{(r_p)} \right]^T$$

$$B_y \equiv \left[C_1A^{(r_2)}, C_2A^{(r_2)}, \ldots, C_1A^{(r_p)} \right]^T$$

$$A_x \equiv \left[C_1A^{(r_2-1)}, C_2A^{(r_2-1)}, \ldots, C_1A^{(r_p-1)} \right]^T$$

By is invertible because of the well-defined relative degree assumption. From equation (3), we can see that the control law is

$$u_{ff} = B_y^{-1} [y^{(r)} - A_x x(t)] \quad \forall \ t \in (-\infty, \infty)$$

Then, there exist a state transformation T

$$[\xi(t) \ \eta(t)] = T x(t)$$

which transforms the states to internal dynamics $\eta(t)$ and the output and its derivatives in time up to (r_1-1) as
\[\xi(t) = [y_1(t), \ldots, y_{p-1}(t), \ldots, y_p(t)] \tag{5} \]

The expression of the new system after coordinate transformation is
\[\begin{align*}
\dot{\xi} &= \dot{A}_1 \xi + \dot{A}_2 \eta + \dot{B}_1 u \\
\dot{\eta} &= \dot{A}_3 \xi + \dot{A}_4 \eta + \dot{B}_3 u
\end{align*} \]

where
\[\dot{A} = \begin{bmatrix} \dot{A}_1 & \dot{A}_2 \\ \dot{A}_3 & \dot{A}_4 \end{bmatrix} = T^{-1}AT \text{ and } \dot{B} = \begin{bmatrix} \dot{B}_1 \\ \dot{B}_3 \end{bmatrix} \]

The control law to maintain the exact tracking can be written
\[u_{ff} = B_y^{-1}[y_d' - A_\xi \xi(t) - A_\eta \eta(t)] \]

where
\[A_\xi, A_\eta = A_x T \]

Also the internal dynamics
\[\begin{align*}
\dot{A}_3 \xi + \dot{A}_4 \eta + \dot{B}_2 B_y^{-1}[y_d' - A_\xi \xi(t) - A_\eta \eta(t)] \\
\dot{A}_3 \eta(t) + \dot{B}_3 Y
\end{align*} \tag{7} \]

Where
\[\begin{align*}
\dot{A}_3 &= \dot{A}_2 B_2 B_y^{-1} A_\eta \\
\dot{B}_3 &= \dot{A}_3 - \dot{B}_2 B_2 B_y^{-1} A_\xi + \dot{B}_2 B_y^{-1}
\end{align*} \]

in the same respect, equation 3 can now be written as
\[u_{ff} = B_y^{-1}[y_d^{(d)} - A_\xi \xi(t) - A_\eta \eta(t)] \\
- B_y^{-1} A_\eta \eta(t) - [B_y^{-1} A_\xi - B_y^{-1}] Y \\
C_\eta \eta(t) + D_y Y(t) \tag{8} \]

Where
\[\begin{align*}
C_\eta &= -B_y^{-1} A_\eta \\
D_y &= -[B_y^{-1} A_\xi - B_y^{-1}]
\end{align*} \]

equation (7) together with equation (8) form the inverse system and can be represented in state space form as in Figure 4.

\[Y(t) \]

\[\dot{B}_3 \]

\[\dot{A}_3 \]

\[\dot{A}_4 \]

\[\dot{B}_2 \]

\[\dot{A}_1 \]

\[\dot{A}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]

\[\dot{B}_4 \]

\[\dot{B}_3 \]

\[\dot{B}_2 \]

\[\dot{B}_1 \]
The system was found to be neither state controllable nor observable. Also, from the figure, we can see that the system is non-hyperbolic i.e., we have poles on the imaginary axis. This has the negative implication that the poles of the system cannot be arbitrarily placed. However, it was found that after transformation, \((A_\eta; B_\eta)\) is fully controllable and the poles in the subsystem involved with the internal dynamics (flexure variables) can be arbitrarily placed.

Non-hyperbolicity is a situation where the poles of a dynamic system are located on the imaginary axis. Whereas the system is not unstable, this scenario is undesirable especially in vibration control as the internal dynamics, flexure variables in this case remains constant with time. To make the system hyperbolic, pole assignment method was employed in the internal dynamic systems \((A_\eta; B_\eta)\). With all the poles arbitrarily placed on the left hand side of the s-plane, the convergence of the internal dynamics is assured. The internal dynamics \(\eta(t)\) can be solved conventionally by integrating forward in time as

\[
\eta(t) = \int_{-\infty}^{t} e^{A_\eta(t-\tau)}B_\eta Y_d(\tau)d\tau
\]

Since the system involves the derivatives of the desired output, it is required that this signal be differentiable up to degree \(r_p\). This was solved by augmenting the inverse system with lowpass filter as in the internal model architecture[16], [17] of the form

\[
f(s) = \frac{1}{(\lambda s + 1)^n}
\]

The order of the filter \(n\) is chosen large enough to make the inverse system proper. On the other hand, the adjustable parameter \(\lambda\) determine the filter rolloff which in turn determines the speed of response. Increasing the values of \(\lambda\) makes the response sluggish and vice versa.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 6, 7 and 8 shows the in-plane, torsional and out of plane strain for link 1 and link 2 for values of \(\lambda = 0.3, 0.5\) and \(0.7\) respectively. There was a significant reduction in link vibration with the introduction of the inverse controller. This is attributed to the fact that the internal dynamics corresponding to the vibrations are suppressed in the inverse system and any residue is further filtered out by the augmenting low pass filters.
We can also see that an increase in the value of λ is accompanied by sluggish response as well as more reduction in link vibration. A closer look at the first 10 seconds of the strain information, the response with the controller takes 2 seconds for $\lambda = 0.3$, 3 seconds for $\lambda = 0.5$ and 4 seconds for $\lambda = 0.7$ which is very short in comparison to the response without the controller, which doesn’t settle to the desired position for the entire period. In the last 10 seconds, though the settling time is 4 seconds, the response with the inverse controller is way superior.

![Figure VII. Torsional Strain](image1)

![Figure VIII. Strain, Link 2 Out of Plane](image2)

![Figure IX. Strain Spectral Power Density, Link 1 In Plane](image3)
Figure 9, 10 and 11 shows the in-plane, torsional and out-of-plane strain spectral power densities for link 1 and link 2. Peaks between 3Hz and 7Hz correspond the link vibration dominant modes. This confirms the improvement introduced by the inverse controller. Figure 12 shows the variation of the strain spectral power density with different values of λ.

Significant reduction in the vibration modes is evident at 3Hz and minimal reduction for the 7Hz modes.
VI. CONCLUSION

In this paper, an inverse system for a multilink flexible manipulator is successfully developed and used as a controller. The results presented show that link vibrations are significantly reduced in comparison to a system without inverse controller.

REFERENCES

