New Network Models With New Graph Labellings For Information Cryptograph

Hui Sun¹, Xiaohui Zhang¹, Bing Yao¹,², Mingjun Zhang², Ming Yao³

1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
2. School of Information Engineering Lanzhou University of Finance and Economics, Lanzhou, 730101 China
3. Department of Information Process and Control Engineering, Lanzhou Petrochemical College of Vocational Technology Lanzhou, 730060 China

Keywords: cryptograph; models; edge magic graceful labelling; graphical password; algorithm.

Abstract

Based on the idea of of “graphical construction plus number theory” and magic type of various labellings for solving network transfer delay by using other type of graphical passwords, we define a new graph labelling, called generalized edge magic graceful labelling, and build some large scale of network models having the new labellings to verify effective algorithms.

1 Introduction

1.1 Researching background

It is noticeable, the contesting control of internet key-resources and cyber-space in the world will be more intense, the network security risk of industrial control system, intelligent technology application, cloud computing and mobile payment domain will be further increased. It is imperative to study new passwords. Wang et al. [15] design some new graphical passwords by their idea of “graphical construction plus number theory” to aim new secure and memorable passwords for users and very difficult to be broken [14]. Suo et al. [13] point out: Knowledge based techniques are the most widely used authentication techniques and include both text-based and picture-based passwords. From considering storage and communication, graphical passwords require much more storage space than text based passwords. However, the graphical constructions proposed by Wang et al. are graphs of graph theory, and they are very simple than that mentioned in [13]. We think of this is a possible way for solving network transfer delay by using other type of graphical passwords.

“Graphical construction plus number theory” can be realized by graph labellings, and this idea is related with many mathematical conjectures, such as “Every tree is graceful” due to Rosa [11]. The survey article [4] has collected over 1700 papers on research of graph labellings. Motivated from the edge magic graceful labelling [10] and the generalized edge magic total labelling [16], we define a new magic labeling, called generalized edge magic graceful labelling. As known, Kotzig and Rosa [6] defined the edge magic total labelling, and the articles [3, 12, 5] distributed many results on the edge magic total labelling. MacDougall et al. [7] first defined the vertex magic total labelling, many results on researching the vertex magic total labelling can be found in [9, 8, 1].

1.2 An example

We present an example for realizing the idea of “graphical construction plus number theory” here. A file was encrypted by a lock shown in Fig-2 (f) (or another lock is shown in Fig-3 (i)). The lock, Fig-2 (f), must be opened by two keys. Bob was given a graphical construction shown in Fig-1 (a) for making a key shown in Fig-1(c). Bob labelled seven vertices shown in Fig-1 (b), and then he labelled six edges by a rule that each edge is labelled with the absolute value of difference of two labels assigned to two vertices of this edge to finish a complete key shown in (c). Alice was given a graphical construction shown in Fig-1 (a) for making another key shown in Fig-2 (e), she labelled seven vertices shown in Fig-2 (d), and then she labelled six edges, by a rule that each edge is labelled with the absolute value of difference of two labels assigned to two vertices of this edge to produce a key shown in Fig-2 (e).

Is not difficult to see another group of two keys and another lock are shown in Fig-3.

![Figure 1: Bob was given a graphical construction (a) for making a key (c), and he labelled seven vertices shown in (b), and then he labelled six edges shown in (c).](image)

![Figure 2: Alice was given a graphical construction shown in Fig-1 (a) for making another key (e), she labelled seven vertices shown in (d), and then he labelled six edges shown in (e); the lock is shown in (f).](image)
1.3 Preliminary

We use the standard terminology and notation of graph theory here, and the graphs mentioned are finite, undirected, no loops and no multiple edges, otherwise terminology and notation not introduced can be found in [2]. For the purpose of stating quickly, the short hand symbol \([m, n]\) stands for an integer set \([m, m+1, m+2, \ldots, n]\), where \(m\) and \(n\) are non-negative integers with respect to \(0 \leq m < n\); and \([s, t]^*\) is an odd integer set \([s, s+2, \ldots, t]\) with odd numbers \(s < t\).

![Graph Visualization](image)

A \((p, q)\)-graph \(G\) has \(|V(G)|=p\) vertices and \(|E(G)|=q\) edges; \(G\) has a proper mapping \(f\) from \(V(G)\) (or \(E(G)\), \(V(G)\cup E(G)\)) to a non-negative integer set \([m, n]\) such that \(f(u)\neq f(v)\) for any pair of vertices \(u, v\) (or any pair of edges, or any pair of elements), we call \(f\) a graph labelling of \(G\) hereafter. Write \(f(V(G))=\{f(u): u \in V(G)\}\) and \(f(E(G))=\{f(uv): uv \in E(G)\}\) in the following discussion.

Definition 1. ([4, 17]) Suppose that a \((p,q)\)-graph \(G\) admits a mapping \(f: V(G) \rightarrow [0, q]\), and the edge label set is defined by \(f(E(G))=\{f(uv): uv \in E(G)\}\). If \(f(u)\neq f(v)\) for any pair of vertices \(u, v\) of \(G\), and \(f(E(G))=\{1, q\}\), then we say \(f\) is a graceful labelling of \(G\), and \(G\) is a graceful graph.

Furthermore, if \(G\) is a bipartite graph with bipartition \((X,Y)\), then we call \(f\) a graceful labelling of \((X,Y)\) if \(f(x)\neq f(y)\) for any pair of vertices \(x, y\) of \(G\), and \(G\) is a graceful graph.

Definition 2. Suppose that \(G\) is a connected \((p,q)\)-graph. If there exists a non-negative integer \(k\) such that \(G\) has a bijection \(f: V(G) \cup E(G) \rightarrow [1, p+q]\), \(|f(u)+f(v)−f(uv)|=k\) holds true for any edge \(uv \in E(G)\), we then call \(f\) an edge graceful label (EMGL) of \(G\), \(k\) a magic constant. Furthermore, if \(G\) is a bipartite graph with bipartition \((X,Y)\), and \(f\) satisfies \(\max\{f(y): y \in E(Y)\}<\min\{f(y): y \in E(X)\}\) (or \(f(X)<f(Y)\) hereafter) and \(f(V(G))=\{1, q+1\}\), we call \(f\) a super generalized set-ordered edge-magic graceful labelling (super generalized set-ordered EMGL).

Theorem 2. Suppose that \(G\) is a bipartite graceful graph. Then the edge symmetric graph \(H=(K_2; G)\) admits some super generalized edge magic graceful labellings.

Lemma 1. A connected bipartite graph is a set-ordered graceful graph if and only if it admits a super generalized edge magic graceful labelling.

Proof. Suppose that \(H\) is a connected bipartite \((p,q)\)-graph, its bipartition is \((X,Y)\), where \(X=\{x_i: i \in [1,s]\}\), \(Y=\{y_i: i \in [1,t]\}\), \(s+1=t=p\).

The proof of “if.” Suppose that \(f\) is a set-ordered graceful labelling of \(H\) such that \(f(X)<f(Y)\), so \(f(x_1)=i-1\) with \(i \in [1,s]\), and \(f(y_1)=s+j\) with \(j \in [1,t]\), as well as \(f(x_1)<f(y_1)\). Notice that \(f(x_1)=f(x_1)+s+j=(s+j)+(i−1)\) for any edge \(xy \in E(H)\). We can define a new labelling \(g\) of \(H\) as follows: Let \(g(x_1)\neq f(x_1)+1, i \in [1,s]\), \(g(y_1)\neq f(y_1)+1, f(x_1), j \in [1,t]\); and \(g(x_1)<g(y_1)+1, f(x_1)<f(y_1)\) for each edge \(xy \in E(H)\), where \(M=\max\{f(E(H)), m=\min\ f(E(H))\). Obviously, \(g(x_1)=[1,x_1+1]\) and \(g(y_1)=[q+2, q+1]\) and \(g(x_1)<g(y_1)\).

Moreover, we get \(g(x_1)+g(y_1)<g(x_1)+g(y_1)<g(y_1)\) for any edge \(xy \in E(H)\). We compute the vertex label set \(h(V(H))\subset [1, q+1]\), the edge label set \(h(E(T))\subset [q+2, q+1]\). We define another labelling \(\alpha\) of \(H\) in the way: \(\alpha(x_1)=h(x_1)-1, i \in [1,s]\); and \(\alpha(y_1)=q+1, q+1\) for any edge \(xy \in E(H)\). Because \(\alpha(x_1)=q+1, q+1\) for any edge \(xy \in E(H)\). Therefore, we get \(\{\alpha(x): i \in [1, s]\} \subset [0, w_i−1]\), \(\{\alpha(y): j \in [1, t]\} \subset [q+2, 2q+1]\). We can confirm that \(\alpha\) is a set-ordered graceful labelling of \(H\).

The proof of this lemma is complete.

Theorem 2. Suppose that \(H\) is a bipartite graceful graph. The edge symmetric graph \(H=(K_2; G)\) admits some super generalized edge magic graceful labellings.
Suppose that H is a bipartite (p,q)-graph having a graceful labelling f, (X,Y) is the bipartition of H, where $X=\{x_i: i \in [1,m]\}$, $Y=\{y_j: i \in [1,m]\}$, and $m+1=m+1=f(H')$. We copy H as H'. So the copy H' is bipartite and graceful (f is a graceful labelling of H'), and it has its bipartition (X',Y'), where $X'=\{x'_i: i \in [1,m]\}$ and $Y'=\{y'_j: j \in [1,m]\}$. Join the vertex $u'_0 \in V(H')$ with its imagine vertex $u'_0 \in V(H')$ by an edge $u_0u'_0$, writing the resulting graph as G. It is not difficult to see $V(G)=V(H')\cup V(H')$, $E(G)=E(H')\cup E(H')\cup \{u_0u'_0\}$, and $G=(K; H')$ is an edge symmetric graph with bipartition $(X\cup Y, Y')$. We define a labelling h of G based on the graceful labelling f in the way. Let $h(x_i)=f(x_i)$, $h(x'_i)=f(x'_i)+q+1$ with $i \in [1,m]$; and $h(y)=f(y)+q+1$, $h(y'_j)=f(y'_j)$ for $j \in [1,m]$. Thereby, we get that $h(u)<h(v)$ for any vertex $u \in X\cup Y'$ and vertex $v \in X\cup Y'$. Furthermore, it is not hard to compute $h(X\cup Y')=[0, q]$ and $h(X\cup Y')=[q+1, 2q+1]$. The label of every edge $xy \in E(H)\cup E(G)$ for $i \neq j$ and $i \in [1,m]$ as well as $j \in [1,m]$ is equal to $h(xy)=|h(y)-h(x)|=|f(y)+q+1-f(x)|=q+1+|f(y)-f(x)|$. On the other hand, each edge $x'_i y'_j \in E(H')\cup E(G)$ for $i \neq j$, $i \in [1,m]$, and $j \in [1,m]$ holds $h(x'_i y'_j)=h(y'_j)-h(x'_i)=f(x'_i)+q+1-f(y'_j)=q+1-|f(x'_i)-f(y'_j)|$. For these edges x_i, x'_i and y_j, y'_j of G, we can compute $f(x_i x'_i)=q+1, f(y_j y'_j)=q+1$. The above forms show $h(E(G))=[1, 2q+1]$. Thereby, we conclude that h is really a set-ordered graceful labelling of G. By Lemma 1, the result of this theorem is true.

Theorem 3. Suppose that disjoint bipartite graphs H_1, H_2, \ldots, H_m have set-ordered graceful labellings. Then there are vertices $u_i \in V(H_i$) for $i \in [1,m]$ such that the graph G obtained by joining vertex $u_i \in V(H_i$) with the vertex $u_{i+1} \in V(H_{i+1})$ with $j \in [1,m]$ by an edge has a super generalized edge magic graceful labelling.

Proof. Suppose that f is a set-ordered graceful labelling of the (p_1, q_1)-graph H_1 with bipartition (H_1, H_2) for $k \in [1,m]$, such that $f_1(x_i)=f_1(x_i)$, and $f_1(y_j)=f_1(y_j)$ for $j \in [1,m]$. The proof of Lemma 1, each H_k has a super generalized edge magic graceful labelling g_k with $k \in [1,m]$. We set $g_k(x_i)=f_1(x_i)+1$ for $i \in [1,m]$, and $g_k(y_j)=f_1(y_j)+1$ for $j \in [1,m]$. Each edge $x_i y_j \in E(H_k)$ holds $g_k(x_i y_j)=M_k+M_k+1+1+1+f_1(x_i, y_j)$, where $M_k=\max (f_k(E(H_k)), m_1=\min (f_k(E(H_k)))$. Hence, we have $g_k(x_i y_j)-g_k(x_i, y_j)=f_1(x_i)+1+1+1+f_1(y_j)-f_1(x_i, y_j)=f_1(x_i)+1+1+1+f_1(y_j)-f_1(x_i, y_j)$

Suppose that H is a graph having super generalized edge magic graceful labellings. Add new vertices y_1, y_2, \ldots, y_t to some vertex x of a graph H by joining each new vertex y_i with some vertex x_i of the graph H. This increases the number of vertices in H by t. The new graph H' has a super generalized edge magic graceful labelling g with $t \in [1,t]$ for $i \in [1,t]$. Next, we apply the super generalized edge magic graceful labelling g_k with $k \in [1,m]$ to define a labelling g of G. Let $S'=\sum_{t=1}^{m}(q_t+1)$. We, for $k \in [1,m]$, have

1. For $i \in [1,m]$, and $x_i, y_i \in E(T_{i+1})$, set $g(x_i)=g(x_i)+\sum_{t=1}^{m}(q_t+1)$; $g(y_i)=g(y_i)+\sum_{t=1}^{m}(q_t+1)$; $g(x_i y_i)=g(x_i y_i)+\sum_{t=1}^{m}(q_t+1)$; $g(x_i, y_i)=g(x_i, y_i)+\sum_{t=1}^{m}(q_t+1)$; $g(x_i y_i)=g(x_i y_i)+\sum_{t=1}^{m}(q_t+1)$. Join the vertex $y_{i+1} \in V(H)$ with the vertex $x_{i+1} \in V(T_{i+1})$ for $i \in [1,t-1]$ by an edge to produce a new graph, denoted as G. Next, we apply the super generalized edge magic graceful labelling g_k with $k \in [1,m]$ to define a labelling g of G. Let $S'=\sum_{t=1}^{m}(q_t+1)$. We, for $k \in [1,m]$, have

2. For $i \in [1,m]$, and $y_i \in E(T_{i+1})$, let $g(y_i)=g(y_i)+\sum_{t=1}^{m}(q_t+1)$. We can compute $g(x_i y_i)=g(x_i y_i)+\sum_{t=1}^{m}(q_t+1)$. For each edge $x_i y_j \in E(H)$ with $k \in [1,m]$, we have $g(x_i y_j)+g(x_i, y_j)=g(y_j)+g(y_j)$ $g(x_i)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(y_j)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(x_i)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(y_j)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(x_i)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(y_j)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$. Every edge $x_i y_j \in E(G)$ with $k \in [1,m]$, holds $g(x_i y_j)+g(x_i, y_j)=g(x_i)+g(x_i)$ $g(y_j)+g(y_j)$ $g(x_i)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(y_j)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(x_i)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(y_j)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(x_i)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$ $g(y_j)+\sum_{t=1}^{m}(q_t+1)+\sum_{t=1}^{m}(q_t+1)$. Therefore, we have shown that every edge $y_i \in E(G)$ holds $g(x)+g(y)+g(y)=K$ true. So we conclude that g is a super generalized edge magic graceful labelling of G.

Figure 4: An example for illustrating Theorem 3.

Suppose that H is a graph having super generalized edge magic graceful labellings. Add new vertices y_1, y_2, \ldots, y_t to some vertex x of a graph H by joining each new vertex y_i with some vertex x_i of the graph H. This increases the number of vertices in H by t. The new graph H' has a super generalized edge magic graceful labelling g with $t \in [1,t]$. The proof of Lemma 1, each H_k has a super generalized edge magic graceful labelling g_k with $k \in [1,m]$ to define a labelling g of G. Let $S'=\sum_{t=1}^{m}(q_t+1)$.
the vertex \(x \) by an edge, the resulting graph is denoted by \(G \), we say that this process is a firework algorithm.

Theorem 4. Suppose that \(H \) is a connected graph having super generalized edge magic graceful labellings. The graph \(G \) obtained by doing a firework algorithm do \(H \) admits some generalized edge magic graceful labelling.

Proof. Let \(h \) be a generalized edge magic graceful labelling of a connected \((p, q)\)-graph \(H \). By the definition, there exists a constant \(k \geq 0 \) such that each edge \(uv \in E(H) \) holds \(|f(u)+f(v)−f(uv)|=k \). We select a vertex \(x \in V(H) \) with \(r=h(x)=k>0 \), and do a firework algorithm to \(H \) by adding new vertices \(y_1, y_2, ..., y_t \) and joining each new vertex \(y_j \) with the vertex \(x \) for \(j \in [1, t] \), so we get a new graph \(G \) having vertex set \(V(G)=V(H)∪\{y_1, y_2, ..., y_t\} \) and edge set \(E(G)=E(H)∪\{xy_1, xy_2, ..., xy_t\} \). We define a labelling \(g \) of \(G \) as: Let \(g(w)=h(w) \) for \(w \in V(H)∪E(H) \); \(g(y_j)=j+(p+q)+t \) with \(j \in [1, t] \).

Notice that \(|h(u)+h(v)−h(uv)|=k \) holds true for each edge \(uv \in E(H) \) subset \(G \). For each edge \(xy_j \), we can compute \(|g(x)+g(y_j)−g(xy_j)|=|h(x)+[j+(p+q)]−[j+(p+q)+t]| \)
\[=|h(x)−t|=k \, . \]

Hence, \(g \) is really a generalized edge magic graceful labelling of \(G \). \(\Box \)

![Figure 5: An example for illustrating Theorem 4.](image)

3 Conclusion

We have built some network models having generalized edge magic graceful labellings that are new. Our methods to obtain or results can be easily transformed into effective algorithms. The idea of “graphical construction plus number theory” may be a possible way for reducing storage and accelerate computer communication, since graphical passwords introduced in [13] require much more storage space than text based passwords and produce network transfer delay. We can see that “graphical construction plus number theory” is the knowledge based techniques, and people need vast number of simple graphs and easy remembered graph labellings. So more works on this way are waiting for deep and wide research.

Acknowledgements

The author, Bing Yao, was supported by the National Natural Science Foundation of China under grants No. 61163054, No. 61363060, and No. 616620660.