Bernoulli-Deng Equation and Its General Integral

Xingju Dang¹, Xiaopan Li², and Wenliang Wu³,*¹²³College of Physics & Electronic Information Engineering, Zhaotong University, Zhaotong Yunnan, 657000, China *Corresponding author

Abstract—If real constants \(a, \beta \) (at least one is not zero) let \(g(y) \) and \(f(y) \) satisfy \(g(y)/f(y) \) is a arbitrary constant. Prof. Deng proposed that (2) with the requirement (3) be named Generalized Bernouilli Equation, and gave its general integral. Obviously, Bernoulli Equation is special example of (2) while \(f(y)=y, g(y)=y^n, a=1-n \).

In 2002, Prof. Deng discussed some literature about extension of Bernoulli Equation and proposed two questions in [2], one of is: if \(g(y) \) and \(f(y) \) are not constants, can (2) be integrated to some special function \(H(y) \)? He thought that when we got some result in that two questions, we should extend the definition of Bernoulli Equation really and essentially. Another question is: when the condition (3) was founded, can the equation

\[
\frac{dy}{dx} = P(x)h(y) + Q(x)f(y) + R(x)g(y)
\]

be integrated for some special \(R(x) \) or \(h(y) \)? This question was discussed in [3] by Prof. Deng.

In 2010, Professor Ailian Hu extended Bernoulli Equation to a kind of nonlinear equation

\[
\frac{dy}{dx} = P(x)f(y)\int \frac{dy}{f(y)} + Q(x)f(y)\left[\int \frac{dy}{f(y)} \right]^n,
\]

and got its elementary integral method (1/\(f(y) \) can be integrated) in [4].

In fact, (5) is still Generalized Bernoulli Equation named by Prof. Deng in 1985.

Let \(F(y) = f(y)\int \frac{dy}{f(y)}, G(y) = f(y)\left[\int \frac{dy}{f(y)} \right]^n \), then

\[
\frac{F(y)}{G(y)} = \left[\int \frac{dy}{f(y)} \right]^{-1-n},
\]

\[
\frac{d}{dy}\left[\frac{F(y)}{G(y)} \right] = (1-n)\left[\int \frac{dy}{f(y)} \right]^{-n} \frac{1}{f(y)},
\]

\[
G(y)\frac{d}{dy}\left[\frac{F(y)}{G(y)} \right] = 1-n.
\]

1-n is a constant.
In the following, we answer the first question of Prof. Deng. We first give a theorem, and then give its proofs, and then give two examples in the last part.

II. THEOREM
Equation (2) can be integrated, if real constants \(\alpha, \beta \) meet
\[
\frac{d}{dy} \left[\frac{f(y)}{g(y)} \right] = \alpha + \beta \left[\frac{f(y)}{g(y)} \right].
\]
(6)

If \(\beta \) isn’t 0, the general integral of Equation (2) is as follows:
\[
\frac{g(y)}{f(y) + (\alpha/\beta)g(y)} = \exp\left[(\alpha P - \beta Q) dx \right] C - \beta \int P \exp\left[(\beta Q - \alpha P) dx \right] dx.
\]
(7)

C is a constant of integration.

If \(\alpha \neq 0 \) but \(\beta = 0 \), then the general integral of (2) is (4).

III. PROVE
When both constants \(\alpha \) and \(\beta \) are 0, \(g(y) \equiv 0 \) or \(f(y)/g(y) \) is constant, (2) is separable variable equation. Therefore, it can be integrated.

Obviously, when \(\beta = 0 \), (2) is Generalized Bernoulli Equation named by Prof. Deng. We have known it can be integrated and its general integral is (4).

Let \(u = \frac{g(y)}{f(y) + (\alpha/\beta)g(y)} \) for \(\beta \neq 0 \), then
\[
\frac{du}{dy} = \frac{(f + g\alpha/\beta)dg/dy - df/dy + (\alpha/\beta)dg/dy)g}{[f + (\alpha/\beta)g]^2} = \frac{(df/dy)g - (dg/dy)f}{g^2} = \frac{-g}{[f + (\alpha/\beta)g]^2} \left(\frac{d}{dy} \left[\frac{f}{g} \right] \right) = \frac{-g}{f + (\alpha/\beta)g} \left(\alpha + \beta \frac{f}{g} \right) = -\beta \frac{u}{g}.
\]

Now, (2) become:
\[
\frac{du}{dx} = -\frac{\beta}{g} u \left[P(x) f(y) + Q(x) g(y) \right]
\]
\[
\frac{du}{dx} = -\frac{\beta u}{g} \left[P(x) f + Q(x) \right]
\]

Because \(f/g = (1/u) - \alpha/\beta \), so the above equation is
\[
\frac{du}{dx} = -\beta u \left[P(x) \left(\frac{1}{u} - \frac{\alpha}{\beta} \right) + Q(x) \right]
\]
\[
\frac{du}{dx} = \left[\alpha P(x) - \beta Q(x) \right] u - \beta P(x).
\]

It is a linear equation and its general integral is
\[
u = \exp\left[(\alpha P(x) - \beta Q(x)) dx \right] C - \beta \int P(x) \exp\left[(\beta Q(x) - \alpha P(x)) dx \right] dx.
\]

Then the theorem is proved.

We suggest the naming (2) for Bernoulli-Deng Equation when the requirement (6) (\(\alpha \neq 0 \) or \(\beta \neq 0 \)) was founded.

IV. EXAMPLES
Example 1. Solve the equation:
\[
\frac{dy}{dx} = e^{-x} + e^{x} + e^{-y} + e^{y}.
\]

Solving: Change the equation into:
\[
\frac{dy}{dx} = e^{-y} \left(1 + e^{x} \right) + e^{y} \left(1 + e^{-x} \right).
\]

Let \(P(x) = e^{-x} \), \(Q(x) = e^{x} \), \(f(y) = 1 + e^{-y} \), \(g(y) = 1 + e^{y} \), then
\[
g(y) \frac{d}{dy} \left[\frac{f(y)}{g(y)} \right] = \left(1 + e^{y} \right) \frac{d}{dy} \left(\frac{1 + e^{-y}}{1 + e^{y}} \right) = \left(1 + e^{y} \right) \frac{d}{dy} e^{-y} = -e^{-y} - 1 = -1 - \frac{f(y)}{g(y)}.
\]
This is a Bernoulli-Deng Equation and its general integral is
\[
\frac{1 + e^{-y}}{2 + e^{-y} + e^y} = \exp\left(e^{-x} + e^x \right) \left[C + \int \exp\left(-x - e^x - e^{-y} \right) \, dx \right].
\]
\(C \) is an arbitrary constant.

Example 2. Solve the equation:
\[
\frac{dy}{dx} = (x + y)(x + 2)(y + 2).
\]

Solving: Change the equation into:
\[
\frac{dy}{dx} = (x + 2)y(y + 2) + x(x + 2)(y + 2).
\]

Let
\[
P(x) = x + 2, \quad Q(x) = x^2 + 2x,
\]
\[
f(y) = y(y + 2), \quad g(y) = y + 2,
\]
then
\[
g(y) \frac{d}{dy} \left[\frac{f(y)}{g(y)} \right] = (y + 2) \frac{dy}{dy} = y + 2 = 2 + \frac{f(y)}{g(y)}.
\]

This is a Bernoulli-Deng Equation and its general integral is
\[
\frac{y + 2}{y^2 + 4y + 4} = \exp\left(4x - \frac{x^3}{3} \right) \left[C - \int (x + 2) \exp\left(\frac{x^3}{3} - 4x \right) \, dx \right],
\]
\[
\frac{1}{y + 2} = \exp\left(4x - \frac{x^3}{3} \right) \left[C - \int (x + 2) \exp\left(\frac{x^3}{3} - 4x \right) \, dx \right],
\]
\[
y = \frac{\exp\left(\frac{x^3}{3} - 4x \right)}{C - \int (x + 2) \exp\left(\frac{x^3}{3} - 4x \right) \, dx} - 2.
\]
\(C \) is an arbitrary constant.

REFERENCES