The Pricing of European Exchange Option

Shougang Zhang and Yunfeng Yang*
School of Science XI’AN University of Science and Technology, XI’AN 710054, PR China
*Corresponding author

Abstract—This paper discusses the problem of pricing on some multi-asset option European exchange option in jump-diffusion model by martingale method. By changing basic assumption of William Margrabe exchange option pricing model to the assumption that jump process is count process that more general than Poisson process, it is established that the behavior model of the stock pricing process is jump-diffusion process. The formula of European exchange option whose stock price with jump process is a count process that more general than Poisson process is deduced under the risk-neutral hypothesis, and it is extended that William Margrabe exchange option pricing model.

Keywords—European exchange options; jump-diffusion; count process

I. INTRODUCTION

This Throughout the nineties, we have seen the synergistic union of mathematics, finance, the computer, and the global economy. Currency markets trade tow trillion dollars per day, and sophisticated financial derivatives such as options, swaps, and quantors are commonplace. Since the appearance of the Black-Scholes formula in 1973[1], the financial community has embraced an abundant and ever-expanding array of mathematical tolls and models. Continuous-time mathematics has become one of the essential tools of modern finance. The elegant mathematics of stochastic calculus simplifies the solution of a wide range of important problems in finance. William Margrabe(1978)[2] study an equation for the value of the option to exchange one risky asset for another. His theory grows out of the brilliant Black-Scholes(1973) solution to the longstanding call option pricing problem—which assumes that the price of a riskless discount bond grew exponentially at the riskless interest rate—and Merton’s(1973) [3] extension—in which the discount bond’s value is stochastic until maturity. But we show that real data cannot always be fit by a geometric Brownian motion model, and that more general models may need to be considered. The appearance of important information will cause the stock price to a kind of not continual jumps[4,5].A mass of finance practice has indicated that there is a serious warp between the hypothesis of Black-Scholes model and the underlying asset price and the realistic markets. Therefore, many scholars put forward many new kinds of option pricing models by relaxing some assuming conditions of Black-Scholes model. Option pricing theory with jump-diffusion is one of them. In this paper, I develop an equation for the value of the option to exchange one risky asset for another. Establish the option-pricing model when exercise price is random variable. The option-pricing model is options to exchange one asset to another. Pricing formula of European option is also given.

II. ASSUMPTIONS AND MODELS

Let \((\Omega, \mathcal{F}, P, (F_t)_{t \geq 0})\) be a probability space and \([\mathcal{W}^1, \mathcal{W}^2, 0 \leq t \leq T]\) be a two-dimensional standard Wiener process given on a probability space \((\Omega, \mathcal{F}, P)\). The market is built with a bond \(B_t\) and two risky assets \(S^1_t\), \(S^2_t\). We suppose that \(B_t\) is the solution of the equation

\[
\frac{dB_t}{B_t} = rd t; \quad B_0 = 1, \tag{1}
\]

and \(S^1_t, S^2_t\) satisfies the stochastic differential equation

\[
\frac{dS^1_t}{S^1_t} = rd t + \sigma_1 dW^1_t + (V - 1)d\tilde{N}, \tag{2}
\]
\[
\frac{dS^2_t}{S^2_t} = rd t + \sigma_2 dW^2_t + (U - 1)d\tilde{N}, \tag{3}
\]

where risk-free interest rate \(r\) and volatility \(\sigma_1, \sigma_2\), are supposed to be constant. \([W^1, 0 \leq t \leq T]\) \([W^2, 0 \leq t \leq T]\) are standard Wiener process on a suitable probability space \((\Omega, F, P)\). The correlation between the \([W^1, 0 \leq t \leq T]\) and \([W^2, 0 \leq t \leq T]\) is \(\rho\), \([\tilde{N}, 0 \leq t \leq T]\) is the compensated martingale of nonexplosive counting process\([\mathcal{N}, 0 \leq t \leq T]\) with intensity parameter \(\lambda(t)\) and \(V_v, V_v, \ldots, V_N \quad (V > 0, V_0 = 0)\) \((V, \tilde{N}\) is independent of \(V,\) \(\tilde{N}\) \(U_v, U_v, \ldots, U_N\) \((U, \tilde{N}\) is independent of \(U,\) for \(i = 1\)). \([N, 0 \leq t \leq T]\), \([U, 0 \leq t \leq T]\) are the random variable percentage change in the money supply if the count process occurs. The random variables \([W^1, 0 \leq t \leq T]\), \([W^2, 0 \leq t \leq T]\), \([N, 0 \leq t \leq T]\), \([U, 0 \leq t \leq T]\) are assumed to be mutually independent.

We assume that the filtration \((F_t, 0 \leq t \leq T)\) is generated by the martingale \([\tilde{N}, 0 \leq t \leq T]\) and \([W^1, 0 \leq t \leq T]\), \([W^2, 0 \leq t \leq T]\).

Assumption 1 \(\rho\) is risk-neutral martingale measure\([6,7]\).

Assumption 2 \(\sigma^2 - 2\sigma_1\rho + \sigma^2 \neq 0\).
Lemma 1 Let $\frac{dP^*}{dp} = \sum_{i=1}^{N} V_i \exp\{-\frac{1}{2} \sigma_i T + \sigma_i \int_{0}^{T} \lambda(s) ds\}$, then, under the martingale measure P^*, process $\{X_i, 0 \leq t \leq T\}$ is nonexplosive counting process with intensity parameter $\lambda(t)$, and

$$P_t^*(T) = P_t(T)E(V(t)^*) \exp\{(1 - E(V(t)^*)) \int_{0}^{T} \lambda(s) ds\}$$

$$E[f(V_1, V_2, \ldots, V_i)] = \frac{1}{E(V(t)^*)} E[f(V_1, V_2, \ldots, V_i) \prod_{i=1}^{N} \{V_i\}]$$

If the jumps $V_i, i \geq 1$ have a lognormal distribution with mean parameter μ_i and variance σ_i^2 under the martingale measure P, then $\ln V_i, i \geq 1$ have a lognormal distribution with mean parameter $\mu_i + \sigma_i^2$ and variance σ_i^2 under the martingale measure P^*.

Proof

$$P_t^*(T) = E[I_{\{V_1 \succ 1\}}] = \frac{dP^*}{dp}[I_{\{V_1 \succ 1\}}]$$

$$= E\{\exp[\sigma W_1 - \frac{1}{2} \sigma^2 T] \cdot \exp\{(1 - E(V(t)^*)) \int_{0}^{T} \lambda(s) ds\} \prod_{i=1}^{N} \{V_i\}]$$

$$= P_t(T)E(V(t)^*) \exp\{(1 - E(V(t)^*)) \int_{0}^{T} \lambda(s) ds\}$$

$$E[f(V_1, V_2, \ldots, V_i)] = E[f(V_1, V_2, \ldots, V_i) \prod_{i=1}^{N} \{V_i\}]$$

$$= E\{\exp\{(1 - E(V(t)^*)) \int_{0}^{T} \lambda(s) ds\} \prod_{i=1}^{N} \{V_i\}]$$

$$= E[f(V_1, V_2, \ldots, V_i) \prod_{i=1}^{N} \{V_i\}]$$

$$= \frac{1}{E(V(t)^*)} E[f(V_1, V_2, \ldots, V_i) \prod_{i=1}^{N} \{V_i\}]$$

If the jumps $V_i, i \geq 1$ have a lognormal distribution with mean parameter μ_i and variance σ_i^2 under the martingale measure P, then

$P_t^*(T) = E[I_{\{V_1 \succ 1\}}] = \frac{dP^*}{dp}[I_{\{V_1 \succ 1\}}]$

$= E\{\exp[\sigma W_1 - \frac{1}{2} \sigma^2 T] \cdot \exp\{(1 - E(V(t)^*)) \int_{0}^{T} \lambda(s) ds\} \prod_{i=1}^{N} \{V_i\}]$

$= P_t(T)E(V(t)^*) \exp\{(1 - E(V(t)^*)) \int_{0}^{T} \lambda(s) ds\}$

$= E[f(V_1, V_2, \ldots, V_i)] = E[f(V_1, V_2, \ldots, V_i) \prod_{i=1}^{N} \{V_i\}]$

$= E\{\exp\{(1 - E(V(t)^*)) \int_{0}^{T} \lambda(s) ds\} \prod_{i=1}^{N} \{V_i\}]$

$= E[f(V_1, V_2, \ldots, V_i) \prod_{i=1}^{N} \{V_i\}]$

$= \frac{1}{E(V(t)^*)} E[f(V_1, V_2, \ldots, V_i) \prod_{i=1}^{N} \{V_i\}]$

III. MAIN RESULTS

Before we want the formula for the value of a European-type option. This option is simultaneously a call option on asset S^2 with exercise price S^2_0 and a put option on asset S^1 with exercise price S^1_0.

Proposition 1 Assume that the dynamics of a bond B_t and two risky assets S^1_t, S^2_t are given by (1),(2),(3), respectively. Then the price of a European-type option with a call option on asset S^2 with exercise price S^2_0 and expiry date T is given by the expression

$$C(0, S^1, S^2) = \sum_{i=1}^{N} P_i(T)E[S^2_0 \exp\{(1 - E(U(t))) \int_{0}^{T} \lambda(s) ds\} \prod_{i=1}^{N} U_i \Phi(d_i) -$$

$$S^1_0 \exp\{(1 - E(V(t))) \int_{0}^{T} \lambda(s) ds\} \prod_{i=1}^{N} V_i \Phi(d_i)]$$

where $d_i = \frac{\ln S^2_t - \frac{1}{2} \sigma^2 T}{\sigma \sqrt{T}}$, $\sigma = \sqrt{\sigma^2 - 2 \sigma \rho \sigma + \sigma^2}$.

Proof Since P is risk-neutral martingale measure, we have

$$C(0, S^1, S^2) = E \left[\frac{S^2_t}{B_t} \left(\frac{S^2_0}{B_0} \right)^{-\gamma} \right] = E \left[\frac{S^2_t}{B_t} \left(\frac{S^2_0}{B_0} \right)^{-\gamma} \right] - E \left[\frac{S^1_t}{B_t} \left(\frac{S^1_0}{B_0} \right)^{-\gamma} \right]$$

(4)

For $E \left[\frac{S^2_t}{B_t} \left(\frac{S^2_0}{B_0} \right)^{-\gamma} \right]$, let $X_t = \frac{S^2_t}{S^1_t}$, applying Ito’s lemma yield[9]

$$\frac{dX_t}{X_t} = (\sigma^2 - \sigma \rho \sigma) dt + (\sigma \rho - \sigma) dW^1_t + \sigma \sqrt{\rho \sigma} dW^2_t + \frac{V_t - U_t dN_t}{U_t}$$

(5)

or equivalently

$$\frac{dX_t}{X_t} = \sigma dW^1_t + \frac{V_t - U_t dN_t}{U_t}$$

(6)

where $\sigma = \sqrt{\sigma^2 - 2 \sigma \rho \sigma + \sigma^2}$, $W_t = \frac{\sigma \rho - \sigma^2}{\sigma} (W^2_t - \sigma_f) + \frac{\sigma \sqrt{\rho \sigma}}{\sigma} W^2_t$.

Define by

$$\frac{dP^*}{dp} = \left(\frac{S^2_t}{S^1_t} \right) \prod_{i=1}^{N} U_i \exp\left\{ -\frac{1}{2} \sigma^2 T + \sigma W^1_t + (1 - E(U(t))) \int_{0}^{T} \lambda(s) ds \right\}$$

It is not hard to check that W^1_t and $W^2_t - \sigma_f (0 \leq t \leq T)$ follow one-dimensional standard Wiener processes under the martingale measure P^*, and their mutually independent. Then it
is easy that $W_t = \sigma \phi - \sigma_t \phi (W^2_t - \sigma_t^2)$, where W^2_t is standard one-dimensional Wiener process under the martingale measure ν^*.

The unique solution of stochastic differential equation (6) equals [10]

$$E[V - U] = E[U] = \frac{EV - E(U)}{E(U)}$$

By Lemma 1

$$(7) \equiv \text{equally}$$

$$E[V - U] = E[U] = \frac{EV - E(U)}{E(U)}$$

where $E[V - U] = E[U] = \frac{EV - E(U)}{E(U)}$.

Let $X_t = X_0 \prod_{i=0}^{nT} \left(\frac{V_i}{U_i} \right) \exp\left(-\frac{1}{2} \sigma_t^2 T + \sigma W_t + (E(U) - E(V)) \frac{\sigma_t}{\sigma} \right) \lambda(d(s)ds)$

Thus

$$E \left[\frac{S^T}{B_f} \left| \sigma \right| \right] = \frac{S^T}{B_f} \left[\sigma \lambda \right] = \frac{S^T}{B_f} \left[\sigma \lambda \right] \lambda(d(s)ds)$$

By using the same way we have

$$E \left[\frac{S^T}{B_f} \left| \sigma \right| \right] = \frac{S^T}{B_f} \left[\sigma \lambda \right] \lambda(d(s)ds)$$

Proposition 2 Assume that the dynamics of a bond B_t and two risky assets S_t^1, S_t^2 are given by (1), (2), (3), respectively. If V_t, U_t have lognormal distribution [11] with mean parameter μ_t, ν_t and variance σ_t^2, σ_t^2 under the martingale measure ν^*, then the price of a European-type option with a call option on asset S_t^1 with exercise price S_t^1 and expiry date T is given by the expression

$$C(0, S_t^1, S_t^2) = \sum_{i=0}^{\infty} \mu_{i+1} \exp\left((1 - \mu_t) \int_0^T \lambda(d(s)ds) \Phi(\alpha_t) \right) - S_0 \mu_{i+1} \exp\left((1 - \mu_t) \int_0^T \lambda(d(s)ds) \Phi(\alpha_t) \right)$$

Proof Using Proposition 1

$$C(0, S_t^1, S_t^2) = \sum_{i=0}^{\infty} \mu_{i+1} \exp\left((1 - \mu_t) \int_0^T \lambda(d(s)ds) \Phi(\alpha_t) \right) - S_0 \mu_{i+1} \exp\left((1 - \mu_t) \int_0^T \lambda(d(s)ds) \Phi(\alpha_t) \right)$$

where

$$\alpha_t = \frac{\ln S_0^2 + (\mu_t - \nu_t) \int_0^T \lambda(d(s)ds) + \frac{1}{2} \sigma_t^2 T - n(\mu_t - \nu_t - \sigma_t^2)}{\sqrt{\sigma_t^2 T + n(\sigma_t^2 + \sigma_t^2)}}$$

$$C(0, S_t^1, S_t^2) = \sum_{i=0}^{\infty} \mu_{i+1} \exp\left((1 - \mu_t) \int_0^T \lambda(d(s)ds) \Phi(\alpha_t) \right) - S_0 \mu_{i+1} \exp\left((1 - \mu_t) \int_0^T \lambda(d(s)ds) \Phi(\alpha_t) \right)$$

where

$$\alpha_t = \frac{\ln S_0^2 + (\mu_t - \nu_t) \int_0^T \lambda(d(s)ds) + \frac{1}{2} \sigma_t^2 T - n(\mu_t - \nu_t - \sigma_t^2)}{\sqrt{\sigma_t^2 T + n(\sigma_t^2 + \sigma_t^2)}}$$

Proof Using Proposition 1

$$C(0, S_t^1, S_t^2) = \sum_{i=0}^{\infty} \mu_{i+1} \exp\left((1 - \mu_t) \int_0^T \lambda(d(s)ds) \Phi(\alpha_t) \right) - S_0 \mu_{i+1} \exp\left((1 - \mu_t) \int_0^T \lambda(d(s)ds) \Phi(\alpha_t) \right)$$

where

$$\alpha_t = \frac{\ln S_0^2 + (\mu_t - \nu_t) \int_0^T \lambda(d(s)ds) + \frac{1}{2} \sigma_t^2 T - n(\mu_t - \nu_t - \sigma_t^2)}{\sqrt{\sigma_t^2 T + n(\sigma_t^2 + \sigma_t^2)}}$$

Proof Using Proposition 1
C(0, S_t, S_t^2) = \sum_{i=0}^{n} P_i(T_i) (S_t^i \exp\{(1 - \mu_i) \int_0^T \lambda(s) ds\} \prod_{j=1}^i U_j \Phi(d_j) - \sum_{i=0}^{n} S_t^i \mu_i^* \exp\{(1 - \mu_i) \int_0^T \lambda(s) ds\} \Phi(a_i) - S_t \mu_t^* \exp\{(1 - \mu_t) \int_0^T \lambda(s) ds\} \Phi(\alpha_t)) \]

By using Lemma 1, we have
\[\sigma W_t - \sum_{i=0}^{n} \ln U_i + \sum_{i=0}^{n} \ln V_i\]
would be a normal random variable under the martingale measure \(\mathcal{P}^* \) with mean and variance given by
\[E[\sigma W_t - \sum_{i=0}^{n} \ln U_i + \sum_{i=0}^{n} \ln V_i] = n(\mu_t - \mu_i - \sigma^2)\]
and
\[\text{Var}(\sigma W_t - \sum_{i=0}^{n} \ln U_i + \sum_{i=0}^{n} \ln V_i) = \sigma^2 t + n(\sigma^2 + \sigma_y^2)\]

then
\[E[\prod_{i=1}^n V_i \Phi(d_i)] = \mu_t^* E[\Phi(d_i)]\]

\[= \mu_t^* P^*(\sigma W_t - \sum_{i=0}^{n} \ln U_i + \sum_{i=0}^{n} \ln V_i) = (E(V) - E(U)) \int_0^T \lambda(s) ds \frac{1}{2} \sigma^2 T\]

\[= \mu_t^* P^*(\sigma W_t - \sum_{i=0}^{n} \ln U_i + \sum_{i=0}^{n} \ln V_i, \sigma^2 + \sigma_y^2)\]

\[= \mu_t^* \Phi(a)\]

and
\[E[\prod_{i=1}^n V_i \Phi(d_i)] = \mu_t^* \Phi(a)\]

where
\[a = \ln \frac{S_t^i}{S_0^i} + (\mu_t - \mu_i) \int_0^T \lambda(s) ds + \frac{1}{2} \sigma^2 T\]

Hence, we have
\[C(0, S_t^i, S_t^2) = \sum_{i=0}^{n} P_i(T_i) (S_t^i \exp\{(1 - \mu_i) \int_0^T \lambda(s) ds\} \Phi(a_i) - S_t \mu_t^* \exp\{(1 - \mu_t) \int_0^T \lambda(s) ds\} \Phi(\alpha_t))\]

Proposition 3 Assume that the dynamics of a bond \(B \) and two risky assets \(S_t^i, S_t^2 \) are given by (1),(2),(3), respectively. Then the put-call parity relation may be rewritten as
\[C(t, S_t^i, S_t^2) - P(t, S_t^i, S_t^2) = S_t^i - S_t^0\]

We can use put-call parity[12] to find the price of a European put option on a stock with the same parameters as earlier.

IV. CONCLUDING REMARKS

In this paper, we develop an equation for the value of the option to exchange one risky asset for another. Establish the option-pricing model when exercise price is random variable. The option-pricing model is options to exchange one asset to another. Because jumps do occur in practice, it is advantageous to consider a model for price evolution that superimposes random jumps on a geometric Brownian motion. By changing basic assumption of William Margrabe exchange option pricing model to the assumption that jump process is count process that more general than Poisson process, it is established that the behavior of the model is that the jump distribution is lognormal, we get European exchange call and put option pricing formula and their parity.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foundation of China under Grant No. 71103143, No. 71473194; Science and Technology Foundation of Shaanxi Province of China under Grant No. 2013JXX-40; Natural Science Foundation of Shaanxi Province of China under Grant No. 2017JQ1486; Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 16JK1500).

REFERENCES