Effect of Single SiO\textsubscript{2} Layer Incorporation on Electrical Performances of Metal-insulator-metal Capacitors with Al\textsubscript{2}O\textsubscript{3}-HfO\textsubscript{2}-Al\textsubscript{2}O\textsubscript{3} Dielectrics

Li-Feng ZHANGa and Sai-Sheng XUb

State Key laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China

alfzhang@fudan.edu.cn bssxu@fudan.edu.cn

Keywords: MIM (metal-insulator-metal), VCC (voltage coefficients of capacitance), ALD (atomic layer deposition).

Abstract. The metal-insulator-metal (MIM) capacitors with Al\textsubscript{2}O\textsubscript{3}/HfO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} (AHA) and Al\textsubscript{2}O\textsubscript{3}/HfO\textsubscript{2}/SiO\textsubscript{2}/HfO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} (AHSHA) dielectric structure using atomic layer deposition (ALD) technique have been fabricated. It is demonstrated that the dielectric loss at higher applied frequency and quadratic VCC in high-κ MIM capacitors can be decreased by means of introducing an ultrathin layer of ALD SiO\textsubscript{2}, which has an opposite sign of quadratic VCC against the HfO\textsubscript{2} layers. A high capacitance density of 8.1 fF/μm2 and the low leakage current density of 2.5 × 10-7 A/cm2 at 1 MV/cm can be achieved with the dielectric structure as AHSHA. In addition, the breakdown electrical field in AHSHA dielectric is obviously improved. Furthermore, with the survey of different leakage models, the Schottky emission has been considered as the dominating conduction mechanism for both of the AHA and AHSHA capacitors.

Introduction

High-permittivity (high-κ) metal-insulator-metal (MIM) capacitors have recently been studied for RF and analog/mixed-signal integrated circuits [1-7]. Among high-κ materials, HfO\textsubscript{2} is one of the most promising candidates due to high-κ (about 20-25) and large band gap (5.7 eV) [8-10]. However, a relatively high quadratic voltage coefficients of capacitance (α) remains as a serious dilemma for the application of the HfO\textsubscript{2} MIM capacitors, where the α is known to be inversely proportional to dielectric thickness and dielectric constant [11-13]. So that, the α and capacitance density have a trade-off relationship. Meanwhile, as for conventional dielectric materials of MIM capacitors, SiO\textsubscript{2} and Si\textsubscript{3}N\textsubscript{4} are commonly used materials although it is hard to achieve high capacitance density due to their low dielectric constant κ (about 4-7) [4, 14, 15]. Therefore, in order to obtain high capacitance density, relatively low α and low leakage current density, it seems to be a good choice to incorporate single SiO\textsubscript{2} or Si\textsubscript{3}N\textsubscript{4} layer into high-κ sandwiched dielectric materials of MIM capacitors.

In addition, due to the requirement of the MIM capacitors embedded into the inter-level dielectric layers, the maximum fabrication temperature of the MIM capacitors should be compatible with the thermal budget (<450 °C) of Cu back-end-of-line process. Of the various high-κ dielectric deposition techniques, atomic layer deposition (ALD) technique, which has some outstanding advantages such as exquisite control over the film composition and structure, high uniformity and perfect conformity, can satisfy the low temperature requirement. So far, many reports have been focused on high-κ deposition with ALD, where well properties of high capacitance density, small voltage coefficient of capacitance and low leakage current were observed [16, 17]. However, there has been little study on the effect of single SiO\textsubscript{2} in high-κ sandwiched dielectrics deposited by ALD.
in advanced MIM capacitors.

In this paper, we show that the α of Al$_2$O$_3$/HfO$_2$/Al$_2$O$_3$ dielectric MIM capacitance can be decreased by introducing an ultrathin SiO$_2$ layer deposited by ALD, which has an opposite sign of the α. The ALD Al$_2$O$_3$ layer is deposited as the contact layer between dielectric and electrodes in order to obtain the low leakage current density of the MIM capacitors. Meanwhile, different current leakage models have been used to fit the experimental data in order to investigate the dominating conduction mechanism.

Experimental

A 150 nm TiN was grown on the 500 nm thermal oxide/Si substrate by sputtering, served as the bottom electrode. Subsequently, the TiN coated wafers were transferred into the ALD chamber for the dielectric growth. Al$_2$O$_3$ and HfO$_2$ were grown with thermal ALD process from Al(CH$_3$)$_3$/H$_2$O and Hf(N(CH$_3$)$_2$)(C$_2$H$_5$)$_4$/H$_2$O, respectively. The single SiO$_2$ layer was deposited by plasma enhanced ALD process from the precursor of Trisdimethylamino-silane (TDMAS: SiH(N(CH$_3$)$_2$)$_3$) and O$_2$, with the plasma power of 100 W. During the process, the reactor chamber temperature was set at 200°C, and all of the vapors of precursors were delivered into the reactor chamber with N$_2$ gas as carrier. The dielectric thickness was measured by an ellipsometer. Finally, the top electrode with 100 μm diameter of sputtered Ta was formed with lift-off method. The MIM capacitors with two structures of dielectric layers [A(1nm)/H(11nm)/A(1nm), A(1nm)/H(5nm)/S(1nm)/H(5nm)/A(1nm), A, H and S denoted as Al$_2$O$_3$, HfO$_2$, and SiO$_2$, respectively] were fabricated to investigate the effect of the intermediate SiO$_2$ layer. And then we denoted them as AHA and AHSHA capacitors, respectively. Capacitance-voltage (C-V) measurements were carried out with LCR meter (Keithley 4200) with 100-mV ac sweeping signal. The leakage current characteristics were measured by using semiconductor device analyzer (Agilent B1500A).

Results and Discussion

![Diagram](image-url)
Fig. 1 (a) Schematic diagram of the AHA MIM capacitor; (b) Schematic diagram of the AHS HA MIM capacitor; (c) Cumulative distributions of capacitance densities of both MIM capacitors

Fig. 1 shows the schematic diagrams of AHA and AHS HA MIM capacitors and the cumulative distributions of the measured capacitance densities at 0 V under 1 MHz for both capacitors. The resulting capacitance density equals 12.6 and 8.1 fF/μm² for the AHA and AHS HA capacitors at 50% cumulative probability, respectively. It can be found that with the introduction of the SiO₂ layer, the capacitance density decreases as expected. The dielectric constants can be calculated as 18.4 and 11.9 according to the capacitance density for the AHA and AHS HA capacitors, respectively. For the AHA capacitor, the dielectric constant is in accordance with other reports [4, 11, 18]; while with the introduction of single SiO₂ layer, the dielectric constant drops. The frequency dependences of capacitance densities for both capacitors at 0 V dc bias is shown in Fig. 2, together with the dissipation factor. It can be observed that the capacitance densities are relatively stable as the measurement frequency varied from 1 KHz to 1 MHz, indicating their excellent dielectric characteristics with frequency. Meanwhile, the variation of the dissipation factor along with frequency (as shown in Fig. 2) implies AHS HA structure capacitor with 1 nm intermediate SiO₂ layer can effectively reduce dielectric loss relative to AHA structure capacitor at higher applied frequency.
Fig. 2 The capacitance densities as a function of frequency for both capacitors, together with the dissipation factor.

The voltage coefficients of capacitance (VCC) are very important parameters for the application of MIM capacitors to radio frequency circuits, which can be determined by using Eq. (1) to fit the experimental data:

\[
C(V) = C_0 (\alpha V^2 + \beta V + 1),
\]

(1)

Where \(C_0 \) is the measured capacitance at 0 V, \(\alpha \) and \(\beta \) represent quadratic and linear VCC, respectively.
Fig. 3 (a). Typical plotting of \(C/C_0 \) versus voltage at 1 MHz for both capacitors, together with the fitted curves; (b). Quadratic Vcc as a function of frequency for both capacitors.

The typical normalized capacitances (\(C/C_0 \)) versus dc bias measured at 1 MHz for both capacitors together with the fitted curves have been shown in Fig. 3(a). It is found that the \(\alpha \) value is 4000 ppm/V\(^2\) for the AHA capacitor; while the \(\alpha \) is decreased to 2090 ppm/V\(^2\) evidently with the introduction of the 1nm SiO\(_2\) layer in AHSHA capacitor, as it is predicted. The asymmetric of the curves for dc bias may result from the oxidation of the bottom TiN electrode, which leads to the relatively large VCC due to electron injection from bottom electrode under positive bias voltage [16-18]. At the same time, a better VCC characteristic in AHSHA capacitor can be obviously found, but a worse one in AHA capacitor under positive bias voltage. Fig. 3(b) exhibits the \(\alpha \) as a function of frequency for both capacitors. For the AHA capacitor, the \(\alpha \) value varies from 5340 to 4000 ppm/V\(^2\) with the measurement frequency increasing from 1 KHz to 1 MHz. And for the AHSHA capacitor, the \(\alpha \) value varies from 3090 to 2090 ppm/V\(^2\) with the measurement frequency increasing from 1 KHz to 1 MHz. This results clearly demonstrate the \(\alpha \) value is strongly affected by the frequency and decreasing with frequency increase, in agreement with other reports [4, 16].

The typical leakage current density (\(J \)) of the capacitors as a function of electric field (\(E \)) measured at room temperature is shown in Fig. 4. It is observed that the AHSHA capacitor exists the much higher breakdown field than that of the AHA capacitor. This indicates that the intermediate SiO\(_2\) layer is very effective for improving the dielectric breakdown strength, because SiO\(_2\) has an amorphous state and a large band gap (9 eV) in a universal IC process temperature range [14]. Ding et al. have reported that the crystallization of HfO\(_2\) can be enhanced with increasing its thickness [8]. So with the introduction of the intermediate SiO\(_2\) layer, the crystallization of HfO\(_2\) can be suppressed and the grain boundaries (highly leaky paths) can be decreased, in order to lead to high electrical breakdown strength [19]. Meanwhile, the decrease of leakage current density is found with the introduction of SiO\(_2\) layer, where the leakage current density is 8.1\(\times 10^{-7} \) A/cm\(^2\) at 1 MV/cm for the AHA capacitor and the leakage current density of the capacitor decreases to 2.5\(\times 10^{-7} \) A/cm\(^2\) at 1MV/cm with the introduction of the 1 nm intermediate SiO\(_2\) in AHSHA capacitor, when it maintains the fixed physics thickness of the insulator. Furthermore, the small asymmetry of the leakage current density has been found as a function of the electric field for both capacitors, which may be caused by the different work function of the
In order to investigate the intrinsic physics of the leakage current, we survey the general leakage mechanisms at present including Schottky emission and Poole-Frenkel (PF) emission [4, 14]. According to Schottky emission arising from a difference in Fermi level between a metal and a semiconductor, charges have to overcome the potential barrier created by the energy difference between the metal and semiconductor [4, 20, 21]. The current density (J_s) can be expressed as

$$J_s = AT^2 \exp \left(-\frac{\Phi - \sqrt{q^2 E / 4\pi \epsilon_0 \epsilon_r}}{k_B T} \right),$$

(2)

where A is the Richardson constant, T is the temperature, Φ is the height of the Schottky barrier, q is the electronic charge, ϵ_0 is the permittivity of free space, ϵ_r is the dynamic relative dielectric constant, and k_B is the Boltzmann constant. For Poole-Frenkel (PF) emission, it involves the thermal ionization of trapped carriers into the conduction of thin films [14, 21], and can be expressed as

$$J_{PF} = BE \exp \left(-\frac{E_t - \sqrt{q^3 E / \pi \epsilon_0 \epsilon_r}}{k_B T} \right),$$

(3)

Where B is the constant, E_t is the trap ionization energy. Fig. 5 exhibits the typical plotting of $\ln (J)$ vs $E^{1/2}$ for the AHA and AHSHA capacitors under electron bottom injection according to the Schottky emission. It is observed that the experimental data can be well linearly fitting with
Schottky emission model and the relative dielectric constants (ε_r) for AHA and AHSHA dielectrics are deduced around 26.8 and 24.5, which are slightly larger than the previous calculated dielectric constant 18.4 and 11.9 by C-V measurement; while both of the deduced relative dielectric constants for AHA and AHSHA are over 30 with PF emission model (not shown here), which are far larger than values of theory and C-V measurement [8-10]. This result demonstrates the Schottky emission dominates the conduction for both of AHA and AHSHA capacitors, in agreement with the observation in AHA capacitor by Ding et al [4].

Fig. 5 Typical plotting of ln(J) vs E1/2 for the AHA and AHSHA capacitors according to the Schottky emission, and the deduced relative dielectric constants (ε_r).

Conclusions

The Al$_2$O$_3$/HfO$_2$/Al$_2$O$_3$ dielectric MIM capacitors with the SiO$_2$ intermediate layer have been fabricated with ALD technology. The decrease of the quadratic voltage coefficient of HfO$_2$ MIM capacitance by introducing an ultrathin SiO$_2$ layer has been realized in our experiment. Meanwhile, it is found that the properties of the dielectric loss and leakage density can be obviously improved. Moreover, the Schottky emission is responsible for the dominating conduction mechanism for both of AHA and AHSHA MIM capacitors.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61076076), and the China Postdoctoral Science Foundation (No. 2014M551323).

References

