Comparison study of CO$_2$ electroreduction to formate fuel on Cu$_x$O nanocatalysts synthesized with different reducing agent in hydrothermal method

Tao Lei1, Kun Yang1, Qi Zhang1, Joey June2,* and Jinli Qiao1,*

1College of Environmental Science and Engineering, Donghua University, 2999 Ren’min North Road, Shanghai 201620, China

2Wattech Power Inc, 150-11120 Bridgeport Rd, Richmond BC V6X1T2, Canada

Corresponding author. qiaojl@du.edu.cn, jjung@wattechpower.ca
Tel: +86-21-67792379. Fax: +86-21-67792159

Keywords: Cu$_x$O nanocatalysts, reducing agent, electroreduction, CO$_2$, catalytic activity, Faradaic efficiency.

Abstract. In this study, novel kinds of Cu$_x$O nanocatalysts have been successfully synthesized with different reducing agents (aniline, O-methoxyaniline and 3,5-dimethoxyaniline) by a facile hydrothermal method. The catalytic performances of the as-prepared Cu$_x$O nanocatalysts were investigated systematically for the electroreduction of CO$_2$, and compared with the one which has been produced in our previous work using 2,5-dimethoxyaniline as catalyst’s synthetic reducing agent. The experiments show that the catalytic activity of Cu$_x$O nanocatalysts largely depends on the molecular structure of the reducing agent used for the catalyst’s synthesis. Using 3,5-dimethoxyaniline as an effective reducing agent, the obtained Cu$_x$O nanocatalyst gives the best catalytic activity in terms of both reduction current density and Faradaic efficiency. A high current density larger than 20 mA cm$^{-2}$ was observed at -1.25V. The Faradaic efficiency of formate production with a maximum value of 36% was obtained at low potential of -0.7 V vs. SHE.

Introduction

Currently, a lot of researchers have explored valuable conversion methods to control the content of CO$_2$ in the atmosphere such as chemical reduction, radiation reduction, electrochemical reduction and photochemical reduction [1]. Among these methods, electrochemical reduction of CO$_2$ is considered as a pretty appropriate technology because of its simple, environmentally friendly and well controllable specialties[2,3]. However, the CO$_2$ electroreduction kinetics is extremely sluggish, and the focal point is to develop efficient catalysts which can increase the activity and selectivity, especially for room-temperature CO$_2$ reduction in aqueous solutions [4]. In this regard, the single crystal copper (Cu) electrode has been studied for CO$_2$ electroreduction owing to its advantage of low cost and abundant. Nevertheless, there are some fatal weaknesses for the electrochemical reduction method. For example, many researchers reported that copper electrode has the characters of poisoning and deactivation [5,6]. Moreover, pure Cu electrode is easy to be corroded in alkaline electrolyte, which will shorten its service life [7].

In order to avoid these disadvantages and improve the performance of CO$_2$ reduction, with 2,5-dimethoxyaniline as the reducing agent, we have prepared efficient Cu$_x$O nanocatalysts with special 3D hierarchical nanosphere structure by a hydrothermal method, which showed high catalytic performance for CO$_2$ electroreduction [8,9]. As a continuing effort in improving Cu$_x$O catalyst’s activity and selectivity, in this paper, using aniline, O-methoxyaniline and 3,5-dimethoxyaniline as the effective reducing agents, we prepared novel three kinds of Cu$_x$O nanoparticles to investigate the effects of different reducing agents on the obtained catalysts’ catalytic performances for CO$_2$ electroreduction.

Experiment

Cu₄O nanocatalysts preparation. Cu₄O nanocatalysts were prepared using the same synthesis conditions as reported in our previous work [8], except by applying different reducing agents such as aniline, O-methoxyaniline and 3,5-dimethoxyaniline. Fig. 1 illustrates the molecular structure of these three reducing agents. In order to analyse the catalytic performances for Cu₄O nanocatalysts, the three samples synthesized using different reducing agents were labeled with Cu₄O_a (the reducing agent is aniline), Cu₄O_b (the reducing agent is O-methoxyaniline) and Cu₄O_c (the reducing agent is 3, 5-dimethoxyaniline), respectively.

Cu₄O/GDL Electrode preparation. 15 mg Cu₄O nanoparticles was suspended in 1mL isopropyl alcohol (Sinopharm Chemical Reagent Co.) and moderate Nafion® solution (5 wt%) was added to the mixture solution to increase adhesion of catalyst ink. The loading of catalyst was 3 mg cm⁻².

![Molecular structure of reducing agents](image)

(a) (b) (c)

Fig. 1 Molecular structure of aniline (a), O-methoxyaniline (b) and 3,5-dimethoxyaniline (c) used for Cu₄O nanocatalysts synthesis.

Electrochemical test. All electrochemical measurements were tested in a conventional three-electrode electrochemical cell as shown in Fig. 2, in which cation exchange membrane (Nafion®, 117, Dupont) was used as a separator to allow proton (H⁺) through from the anode chamber to cathode chamber. A Pt foil electrode and a saturated calomel electrode (SCE) were used as the counter electrode(CE) and the reference electrode(RE), respectively. Carbon paper (4 cm², used as GDL) coated with Cu₄O nanoparticles was used as working electrode(WE). 0.5 M KHCO₃ aqueous solution was used as electrolyte. All measured potentials were referenced to a standard hydrogen electrode (SHE) at ambient temperature and pressure.

![Electrochemical reduction cell](image)

Fig. 2 The electrochemical reduction cell of CO₂.

The electrocatalytic activity and kinetics of Cu₄O/GDL electrode were tested using cyclic voltammetry (CV) at potential scan rates of 50 mV s⁻¹, in a potential range of 1.25 V to -1.25 V vs. SHE. The controlled potential electrolysis was carried out using a CHI660E electrochemical analyzer in the same standard H-type cell. Before each electrolysis process, the electrolyte was bubbled with N₂ for at least 30 minutes to exhaust the dissolved air in the electrolyte, and CO₂ gas was continuously...
bubbled to maintain the saturation during the following electrolysis. For soluble product measurements, the electrolysis time was controlled for 60 minutes with a constant potential of −0.7 V vs. SHE was imposed for 1 hour for analysis reduction products test, where the electrolysis currents were continuously recorded.

The produced formate was determined and analyzed by ion chromatography (IC). The faradaic efficiency for the formation of formate (FE) was calculated according to eqn. (1) [8]:

\[
FE = \frac{N \times n \times F}{Q}
\]

where \(N\) is the moles of formate produced; \(n\) represents the number of electrons exchanges for reduction of carbon dioxide to formate (\(n = 2\) here); \(F\) is Faraday’s constant (96485 C mol\(^{-1}\)) and \(Q\) is the total charge during the electrolysis. All the measurements were performed under room temperature and ambient pressure.

Results and Discussion

The electrochemical activities of CO\(_2\) reduction. The influences of three different reducing agents (aniline, O-methoxyaniline, 3, 5-dimethoxyaniline) on the synthesized catalyst’s activity for CO\(_2\) electroreduction have been investigated and the results are shown in Fig. 3. The CV curves of Cu\(_x\)O nanoparticles in 0.5M N\(_2\)-bubbled (black line) and CO\(_2\)-bubbled (red line) KHCO\(_3\) aqueous solution were recorded with potential range from 1.25 V to -1.25 V. From Fig. 3(a-c), it can be seen that under N\(_2\) gas atmosphere, there is no obvious current occurred in the whole tested potential range. The current density of 5 mA cm\(^{-2}\) produced at -1.25 V vs. SHE can be ascribed to the hydrogen evolution reaction under N\(_2\) gas atmosphere. However, when purged with CO\(_2\) instead of N\(_2\) for all three as-prepared Cu\(_x\)O catalysts, a sharp increase in current density was clearly observed. The above results suggest that the electroreduction of CO\(_2\) was occurred on these three electrodes. Further from Fig. 3(c), one can see that the highest reduction current density of about -20 mA cm\(^{-2}\) can be achieved for Cu\(_x\)O\(_c\) catalyst, ie., with 3,5-dimethoxyaniline as reducing agent. This result is consistent with our previous work [8]. For an detailed observation, the reduction current density produced by Cu\(_x\)O\(_c\) nanocatalyst is 2 times higher than that of Cu\(_x\)O\(_a\) nanocatalyst, that is, with aniline as reducing agent (Fig. 3(a)). These results indicate that the presence of methoxy functional group is very important, which may facilitate the reduction of CO\(_2\) dramatically. To our interest, it was found that the amount of methoxy functional groups also has great effect on the catalytic performance of the as-prepared Cu\(_x\)O nanocatalyst. From Fig. 3(d), it can be observed that the reduction current density of Cu\(_x\)O\(_c\) catalyst is also 2 times larger than that of Cu\(_x\)O\(_b\) catalyst, where Cu\(_x\)O\(_b\) was synthesized using O-methoxyaniline as the reducing agent. It was noted that the reduction current density of Cu\(_x\)O\(_b\) catalyst is even slightly lower than that of Cu\(_x\)O\(_a\), further verifying that the amount of methoxy functional group plays a key role in synthesizing the high performance Cu\(_x\)O nanocatalyst for CO\(_2\) reduction process.

Faradaic efficiency of CO\(_2\) reduction. Fig. 4 shows the Faradaic efficiency of formate formation of Cu\(_x\)O nanocatalysts at -0.7V vs. SHE. From Fig. 4, it can be seen that the highest Faradaic efficiency was obtained for Cu\(_x\)O\(_c\) catalyst reaching to 36%. However, this value is much lower than our previous reported Cu\(_x\)O nanocatalyst, where 2,5-dimethoxyaniline was used as the reducing agent [8]. It should be noted that the Cu\(_x\)O\(_c\) catalyst synthesized using 3,5-dimethoxyaniline as reducing agent shows the same electrocatalytic activity as in the case for Cu\(_x\)O one synthesized with 2,5-dimethoxyaniline as reducing agent, however, very different selectivity was obtained. This may be resulting from the location of methoxy functional group in the dimethoxyaniline molecule, which controls the morphology formation of the as-prepared Cu\(_x\)O nanocatalyst, and thus the formate formation selectivity. Further from Fig. 4, the Faradaic efficiency of formate formation of Cu\(_x\)O\(_a\) (without methoxy functional group) is 25%, higher than that of Cu\(_x\)O\(_b\) (17%) catalyst. This is in a well agreement with the electrochemical activity as shown in Fig. 3. The above results further suggest that not only the presence of methoxy functional group is the one that affects the as-prepared catalyst’s
activity for CO₂ reduction, but also the amount and the location of methoxy functional group in
dimethoxyaniline molecule also play the important role in electrolytic CO₂ reduction process.

![Graphs showing current density vs potential for different CuₙO nanocatalysts.

Fig. 3 The CV curve of CuₙOₐ (a), CuₙOₐ (b), CuₙOₐ (c) nanocatalysts, which was measured in 0.5M
KHCO₃ aqueous solution with N₂ gas (black line) and CO₂ gas (red line) atmosphere, respectively. (d)
The comparison of CV curves for three CuₙO nanocatalysts under CO₂ gas atmosphere.

![Bar chart showing Faradaic efficiency of formate formation for different CuₙO nanocatalysts.

Fig. 4 Faradaic efficiency of formate formation of CuₙO nanocatalysts at -0.7V vs. SHE.

Conclusions

In short, the catalytic activity of CuₙO nanocatalysts depends largerly on the structure of the reducing
agent used for the catalyst’s synthesis in hydrothermal method. Also, the amount of methoxy functional
groups and the location in the molecular have great effect on the finally obtained CuₙO catalysts’
activity. In terms of both reduction current density and Faradaic efficiency, CuₙO nanocatalyst with
3,5-dimethoxyaniline performs the best. The current dentistry is larger than 20 mA cm⁻² and the
Faradaic efficiency of formate is up to 36%.
Acknowledgments

The authors give their thanks to the financial support from the National Natural Science Foundation of China (91645110), the Project of Introducing Overseas Intelligence High Education of China (2016-2017) and State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, China.

References