Evaluation Methodology of the Refugees Movement Based on Factor-determining Model

Wenjie Li
School of North China Electric Power University, Baoding 071000, China
363378037@qq.com

Keywords: Refugee Crises, Factor-Determining, Crises Index, Evaluating Safety and Efficiency

Abstract. In this paper, the generic factor-determining model is set up to construct a comprehensive decision-making system, aiming at evaluating the safety and efficiency of the refugee’s movement. The whole work is based on the calculation of the crises index (CI). The larger CI is, the more dangerous and inefficient the refugee movement will be. Three independent families are preliminarily obtained to set with respect to the refugee source, the moving process, and the destination, respectively, containing 11 different factors, to measure the crises index (CI) in quantification. Each factor is transferred to a detailed parameter to support the calculation of the significant coefficient.

1. Parameters

Since factors are difficult to determine because the scope is too large, so it's significant to classify all of those factors with parameters and estimate their effects to carry out the effective method to determining factors and measuring refugee crises.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>The total coefficient measuring the refugees crises</td>
</tr>
<tr>
<td>CH</td>
<td>Coefficients of H that influence the refugee crises</td>
</tr>
<tr>
<td>CP</td>
<td>Coefficients of P that influence the refugee crises</td>
</tr>
<tr>
<td>CD</td>
<td>Coefficients of D that influence the refugee crises</td>
</tr>
<tr>
<td>Ha</td>
<td>The value of aging ratio</td>
</tr>
<tr>
<td>Hm</td>
<td>Mortality</td>
</tr>
<tr>
<td>Hw</td>
<td>The value of Annual freshwater withdrawal</td>
</tr>
<tr>
<td>Hb</td>
<td>The number of hostilities</td>
</tr>
<tr>
<td>Hp</td>
<td>The volume of petroleum</td>
</tr>
<tr>
<td>αi, (i = 1, 2...5)</td>
<td>Coefficients of each parameter</td>
</tr>
<tr>
<td>Pd</td>
<td>Distance between countries</td>
</tr>
<tr>
<td>Pn</td>
<td>The number of countries in the route</td>
</tr>
<tr>
<td>Pr</td>
<td>Valuation of different means of transportation</td>
</tr>
<tr>
<td>βj, (j = 1, 2, 3)</td>
<td>Coefficients of each parameter</td>
</tr>
<tr>
<td>Areg</td>
<td>The total area of the developed country</td>
</tr>
<tr>
<td>Lp</td>
<td>The number of local population</td>
</tr>
<tr>
<td>σ1</td>
<td>Criterion of average area per local person</td>
</tr>
<tr>
<td>σ2</td>
<td>Criterion of average area per external person</td>
</tr>
<tr>
<td>Dp</td>
<td>Volume of ports, airports and railway stations</td>
</tr>
<tr>
<td>Ds</td>
<td>Area provide with asylums</td>
</tr>
<tr>
<td>Dr</td>
<td>The ratio of investment in the refugees</td>
</tr>
<tr>
<td>γk, (k = 1, 2, 3)</td>
<td>Coefficients of each parameter</td>
</tr>
</tbody>
</table>

2. Establishment of the Model

2.1 Determine independent families

It must be pointed out that the three families are independent and irrelative, and each of them produces a coefficient.

H (Home): Factors in this family derive from the analysis of the Middle East countries themselves’ situation, seen as a driving force to refugees, as well as the individuals themselves.

P (Process): Factors in this family derive from the analysis of the process of refugees’ movement. Take all conditions of move into account while deciding factors.
D (Destination): Factors in this family derive from the situation analysis of the EU countries that would take in refugees, which determine the entry points.

2.2 Measure refugee crises via coefficients of generic families

Via analysis, it can be concluded that all of the three families are positive to the crises, so the effects of each family can add up fuzzily. Then the equation of the coefficient measuring the Refugees Crises is determined:

\[CI = CH + CP + CD \]

Where \(CI \) is the total coefficient measuring the Refugees Crises, \(CH, CP \) and \(CD \) stand for coefficients of \(H, P, \) and \(D \) that influence the refugee crises.

2.3 Filtrating family members to obtain determinant factors

Factors determined in \(H \) family:
1. Refugee's age
 Peoples' age can decide their ability to move.
2. Health condition
 Health of individuals can decide whether they move, so it can be included in the factors of \(H \). To measure health conditioned, we determine mortality to be a parameter.
3 Warfare factors
 Warfare is seen as a factor of \(H \) because the wars significantly influence the explosion of refugee crises.
4. Economic level of refugee countries

Factors determined in \(P \) family:
1. Length of routes
2. Direction change
3. Transportation

Factors determined in \(D \) family:
1. Situation of entries
2. EU countries' asylums capacity
 If the destination country has enough shelters, it can provide refugees with asylums.
 The countries' asylums capacity is important to the destination of refugee movement, so we have to measure the capacity.
3. Available resources for refugee

2.4 Determination of parameters that quantify factors

Parameters measuring factors in \(H \)
We determine parameters and obtain the results below:
1. Aging ratio measuring refugee's age
 We decide aging ratio (the proportion of people over 60 or 65 to total population) to the parameter measuring this factor.
2. Mortality measuring health condition
3. Annual freshwater withdrawals and number of hostilities measuring warfare
 We have known that the wars mainly attribute to water sacristy and relationship with neighbors, so we use annual freshwater withdrawals and number of hostilities as parameters deciding this factor.
4. Volume of petroleum measuring economic level
 Then we can use parameters above to calculate \(CH \):

\[CH = \alpha_1 \cdot Ha + \alpha_2 \cdot Hm + \alpha_3 \cdot Hw + \alpha_4 \cdot Hh + \alpha_5 \cdot Hp \]

Where \(Ha \) is the value of aging ratio, \(Hm \) stands for mortality, \(Hw \) means the value of Annual freshwater withdrawal, \(Hh \) is number of hostilities and \(Hp \) stands for the volume of petroleum. \(\alpha_i \) (\(i=1,2,...,5 \)) mean coefficients of each parameter.

Parameters measuring factors in \(P \)
1. Distance between countries measuring length of routes
2. Number of countries in the route measuring the direction change
3. Valuation of different means of transportation
With consideration of safety and efficiency, we can assign values to each means. Then the initial scores (range 0 to 1) based on analysis can be determined: air transportation gets 0.5, sea transportation gets 1 and land transportation gets 1, too. And then, we can use parameters above to calculate CP:

$$CP = \beta_1 \cdot Pd + \beta_2 \cdot Pc + \beta_3 \cdot Pt$$

(3)

Where Pd is the distance between countries, Pc means number of countries in the route, Pt is valuation of different means of transportation. β_j ($j=1,2,3$) mean coefficients of each parameter.

Parameters measuring factors in D

1. Volume of ports, airports and railway stations measuring situation of entries
2. Area provide with asylums measuring EU countries' asylums capacity

The parameter is named as Ds:

$$Ds = \frac{Area - s_1 \cdot Lp}{s_2}$$

(4)

Where Area is the total area of the developed country, Lp means the number of local population, s_1 and s_2 stand for criterion of average area per local/external person.

3. The ratio of investment in the refugees measuring available resources for refugees. Finally we can use parameters above to calculate CD:

$$CD = \gamma_1 Dp + \gamma_2 Ds + \gamma_3 Dr$$

(5)

Where Dp stands for Volume of ports, airports and railway stations, Ds means area provide with asylums, Dr is the ratio of investment in the refugees. γ_k ($k=1,2,3$) mean coefficients of each parameter.

2.5 Calculation of total CI based on parameters deriving from factors

Putting (2)-(5) together into (1), we are able to calculate the coefficient of refugee crises (CI):

$$CI = \sum \alpha_i \cdot H(\text{parameter}) + \sum \beta_j \cdot P(\text{parameter}) + \sum \gamma_k D(\text{parameter})$$

(6)

This algorithm and previous method to finding determinant factors can be viewed in the block diagram in the followed figure.

3. Conclusion

Through classification method which can be used to classify all the factors into three irrelative families, each determinant factor is finally confirmed to evaluate the safety and efficiency of refugee movement. Besides, the reasonable factors are quantified with measurable parameters. Then the refugee crises which called crises index can be measured, via which the extent of safety and efficiency are intuitively expressed.
References

