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Real-time positioning system is critical for control and navigation of unmanned ground 

vehicles. In this paper, we present a low-cost integrated GPS/DR/IMU positioning 

solution. A two-level adaptive Kalman Filter based algorithm is introduced to fuse sensor 

signals. Experimental results demonstrate a much better performance with accurate and 

robustness output even during short-time GPS signal drop-out. 
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1.   Introduction 

In recent years, there are extensive researches and related applications on 

unmanned ground vehicles or mobile robots. E.g., Google has proceeded its 

unmanned vehicle projects for years and Tesla has released electrical cars with 

self-driving mode. The positioning systems, which provide real-time position 

and attitude information, are key components to enhance vehicular control and 

navigation performance.  

There are two main categories for positioning systems: absolute and relative 

measurements. GPS, whose measurement calculation is based on the pseudo-

ranges sent from different satellites, is one of the most widely used absolute 

positioning systems. It can provide three-dimension position and velocity 

information on a global scale with no cumulative errors and obtain consistent  

precision over time. One major hurdle to GPS inherent in its method of 

operation is interference or blockage of satellite reception, especially in urban 

areas where exist lots of trees, buildings, etc. Moreover, GPS outputs frequency 

is low, the position and velocity data usually has random noise. 
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The Inertial Navigation System(INS) and Dead-Reckoning System(DRS) 

are common systems for relative positioning. INS uses gyroscopes and 

accelerometers outputs to maintain relative pose information. DRS is specially 

used for land wheeled vehicles, which uses speed output from an odometer and 

heading output from a gyroscope for position prediction. The output of INS or 

DRS is highly autonomous, almost free from external interference, with good 

smoothness and short-time accuracy. The major drawback for relative 

positioning is that the measurement is based on  integration of data along 

traveling course. Errors would accumulate by time and tend to unbounded. 

Unmanned vehicles require consistent high precision positioning 

information free from external  interference, which is impossible to provide by 

any single positioning system. GPS and autonomous positioning systems have 

good complementarities, and sensor fusion has become a hot spots for real-time 

ground positioning researches. Sun[1] introduced an on-board GPS/MEMS IMU 

system using low-cost MEMS fabricated INS  to enhance GPS performance. 

Yang[2] focus on a complete GPS/INS integration using discrete Kalman Filter 

and Fuzzy Logic. Fouque [3] implemented an map-aided odometer Dead-

reckoning GNSS-aided precise localization system with pre-collected map 

information. Malyavej [4] discussed a GPS/DR fusion approach using 

Unscented Kalman Filter (UKF). Elkaim [5] built a practical test method for the 

performance of two different low-cost GPS/INS commercial products with 

Differential GPS receiver and high precision KVH FOG. In terms of  sensors 

picked-up, the common combination would be: GPS/high précised-INS, 

GPS/low-cost IMU, GPS/DR, etc. While in terms of fusion methods, the 

Kalman Filter and its applications, e.g., Extended Kalman Filter (EKF) [6], UKF 

[4], Federal Kalman Filter (FKF) [7] are mostly used. The other methods, e.g., 

Neural Network, Fuzzy Fusion are also been discussed by some researchers. 

In this paper, we introduce a GPS/DR/IMU sensor fusion system, which 

combines measurement from a GPS receiver, an onboard odometer, a Fiber 

Gyroscope, and a low-cost MEMS IMU. A distributed strategy and several low-

dimensional adaptive Kalman Filters would be introduced instead of using high 

dimensional EKF, UKF, etc. The computational time would be saved and the 

outputs robustness would be guaranteed. By unique sensors combination and 

appropriate algorithm design, the fusion system provides high-frequency, high-

precision and robust  pose outputs comparable to expensive GPS/INS systems in 

approximate 2D plane urban environments. 

The paper is organized as follows. Section 2 introduce system hardware and 

software layout. Section 3 introduce sensor signal parsing and pre-filtering 

principle. Section 4 introduce the fusion method and experimental results. 

Section 5 is the final conclusions. 
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2.   HW/SW Layout 

The system organization is shown in Fig 1, the real-time information from GPS 

and other sensors is transmitted to embedded computer through RS232 interface. 

The raw data will be parsed and pre-filtered respectively before fusion 

process. The data fusion is implemented by a two-step low dimensional Kalman 

Filter system. The heading and speed information will be filtered respectively 

first, then a Position Kalman Filter is introduced to fusion GPS and the filtered 

heading/speed information. Finally, the position\speed\heading information is 

obtained and sent to vehicles command platform through UDP packets. 

 
Fig. 1.  System structure 

3.   Data Parsing and Pre-filtering 

3.1.   GPS 

The ProPak-G2 NovAtel GPS can output 20HZ real-time three-dimensional 

position, velocity, and Position-Dilution of Precision (PDoP) [8] information in 

WGS84 global frame. In the approximate 2D plane area, the tangent East-North-

Up (ENU) frame is usually introduced for ground positioning. Then, by 

choosing a reference point, the transformation between WGS84 and ENU is 

computed [9].  
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PDoP is an important factor that indicates the accuracy of GPS positioning.  

The smaller the value of PDoP, the higher the GPS positioning accuracy. In the 

design of Position Kalman Filter, PDoP will be used as a key factor for  error 

modeling. 

3.2.   Gyroscope 

The KVH 3000 Fiber-Optic-Gyroscope (FOG) outputs integrated angle data in 

1000 HZ, which can be used as relative heading for unmanned vehicles. The 

FOG is installed horizontally in the center of the vehicle. Due to angular random 

walk, zero-drift effects, vibration noise, ground speed interference and etc, the 

heading error accumulates over time. Set the vehicle lay still in a horizontal 

plane, turn on the onboard generator and engine at the same time(consider the 

noise caused by vibration), the angle outputs results from several tests is shown 

in Fig 2. 

 
Fig. 2.  Test results of KVH FOG angle output. 

 

In static state, the cumulative error of FOG angle is approximately linearly 

increased. Record static angle outputs in different times, and calculate 

cumulative error as Table 1: 

Table 1.  FOG angle cumulative error statistics 

Data samples Cumulative error(deg/s) 

1 -0.0053 

2 -0.0051 

3 -0.0049 

4 

5 

6 

-0.0050 

-0.0047 

-0.0048 

Take average of the data above, we get a error compensation value for 

heading angle output  = -0.050 deg/s. By using this simple compensation 
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method, the error can be partially eliminated. The heading output error can be 

controlled within 5deg/hr. 

3.3.   MEMS IMU 

The Mti MEMS IMU can output 3D position, altitude and acceleration data in 

50Hz. The acceleration in horizontal direction will be used to fuse odometer 

speed and the pitch/roll will be used for vehicle control system. 

3.4.   Odometer 

The odometer speed information is obtained from vehicle CAN bus directly, 

with a output rate of 10Hz.  We use a Differential GPS module to calibrate 

odometer output to acquire better accuracy. The calibration test should be held 

in open and flat ground environment, and make the vehicle moves in a straight 

line. Note that there exists slipping and relative friction between wheels and 

ground, and the degree of friction and  slipping is different in acceleration and 

deceleration mode. The odometer must apply different calibration coefficient in 

respective moving state. 

4.   Fusion Method and Experimental Results 

4.1.   Speed Kalman Filter 

Odometer works poor in inflated or slippery ground and in low speed moving 

mode. A two dimensional EKF method is applied to combine MEMS IMU 

acceleration with odometer speed by using constant acceleration model. The 

fused speed has a better performance in low-speed or poor ground conditions. 

4.1.1.   The state and measurement equation 

The  discrete state vector and equation is shown in Eq. (1).~(2).  

   .
T

k k kX v a  (1) 

 
+1=AX .k k kX W  (2)  

Where kv , ka represents speed and acceleration, A is the transfer matrix 

and kW is the process noise. Assume the sampling period is t , and max change 

of acceleration is , the process noise would be: 

 
1

k

t
W 

 
  
 

 (3) 
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The process covariance noise  matrix Q can be calculated as: 

 
2

2( )
1

T

k k

t t
Q E W W

t


 
   

 

 (4) 

The measurement equation is shown in Eq. (5). 

 .k k kZ HX V   (5) 

Where,  
T

k k kZ v a represents the speed and acceleration measurement 

vector, 
2H I represents second order unit matrix, and  

T

k v aV v v  is the 

measurement noise vector of speed and acceleration. 

4.1.2.   Parameter determination 

Using the odometer sampling rate 10Hz as the update frequency, the covariance 

matrix value is obtained: 

 0.0025 0.025

0.025 0.25
Q

 
  
 

 (6) 

The measurement noise is evaluated from sensor output error by using 

DGPS as standard reference. Through various test results, the measurement 

covariance noise matrix in different speed interval  is : 

 0.0441 0.011 0.0031 0.0029 0.070 0.013
, ,

0.011 0.0027 0.0029 0.0027 0.013 0.0027
l n hR R R

     
       
     

 (7) 

Where Rl,. Rn , Rh represent matrix value in low-speed (0~4 m/s), normal 

speed(4~10 m/s) and high speed(>10m/s). 

4.1.3.   Experimental results 

Use DGPS as the standard speed reference, the odometer speed error and the 

fusion speed error comparison results are shown in Fig 3. Obviously, the speed 

output obtain better performance after sensor fusion. 

 

742

Advances in Engineering Research (AER), volume 117



 
Fig. 3.  Test results of speed error from odometer and odometer/MEMS fusion . 

4.2.   Heading Kalman Filter 

The heading estimation from GPS receiver can only be used in dynamic 

situations. It is combined with random noise and is susceptible to environmental 

interference. The relative heading from FOG is stable and precise in short term, 

while it has cumulative error, needs to be initialized by GPS for global 

positioning use. Heading Kalman Filter is designed to integrate the heading 

output of the two systems, and obtain heading with   precision and robustness in 

both dynamic and static conditions. 

4.2.1.   Filter design 

Using the FOG heading error as the estimator, an Indirect Kalman Filter 

(IKF)model is introduced. The state and measurement equations is shown as 

below: 

 
1k k drift noise       (8) 

 ( ) FOG gps FOG gpsZ v            (9) 

Where
drift and

noise  represent drift and random error of FOG respectively, .

 represents FOG heading error and v  represents GPS measurement noise. 

The real-time IKF process is shown in Fig 4 
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Fig. 4.  IKF fusion process for FOG and GPS heading output . 

4.2.2.   Experimental results 

After filter initialization in open ground, the vehicle use urban area as testing 

environment, comparison results is shown in Fig. 5. 

 
Fig. 5.  IKF  comparison of heading output (GPS only and IKF Fusion) . 

4.3.   Position Kalman Filter 

GPS is sensitive to signal dropout and hostile jamming, a position Kalman Filter 

which fuses GPS with local positioning measurement  is introduced to reduce 

noise and retain position/attitude during signal drop-out. 
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4.3.1.   Filter design 

Suppose the unmanned vehicle moves in approximate 2D plane, the prediction 

process is modeled by Dead-Reckoning algorithm, the initialization and 

measurement output of  KF is obtained from GPS signal analysis. The discrete 

state and measurement equations is: 

 
( ) ( 1)1 0 cos

( ) ( 1)0 1 sin

e e e

n n n

x k x k wT
V

x k x k wT





        
                  

 (10) 

 
z ( ) ( ) ( )1 0

( ) ( ) ( )0 1

e e e

n n n

k x k v k

z k x k v k

      
       
      

 (11) 

The general filter process is shown in Fig 6. 

 
Fig. 6.  General KF fusion process for positioning output . 

4.3.2.   Experimental results 

Test route is selected from city environments, the vehicle started from open 

ground for  initialization, then passed through urban roads with many trees and 

buildings, and finally entered indoor parking lot where satellite signals were 

totally blocked .The output of fusion data can well represent the performance of  

filter in  this complex and multi-interference environment, shown in Fig 7.  
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Fig. 7.  General KF fusion process for positioning output 

5.   Conclusions 

This paper presents fusion algorithm and implementation of positioning system 

A two-step discrete KF system using signals from GPS and other local 

positioning sensors  is introduced. Experimental results demonstrate that the KF 

based algorithm can improve accuracy, robustness  and retain positioning output  

during  short-term of GPS signal drop-out. The fusion system presented in this 

paper offer a practical exploration for unmanned vehicle navigation with 

adequate performance and affordable cost for commercialization. 
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