The Temperature Distribution of Bathtub

Yuhe Tian¹, a
¹ North China Electric Power University, Baoding 071000, China
atyhstudy@163.com

Keywords: the first law of thermo dynamics Fouriers Law, Calorie formula

Abstract. We utilize the first law of thermo dynamics Fouriers Law and Calorie formula to derive the heat conduction equation and to discuss the temperature of the bathtub water in space and time. Firstly, we set time as a constant. In space, we projected the temperature distribution equation to the three planes: X-Y Plane, Y-Z plane and X-Z plane. To solve the equations, the PDE (Partial Differential Equations) toolbox of MATLAB was used. Then we kept the temperature constant, the image of temperature distribution at different time was obtained. The variance of the temperature in the bathtub was defined to measure the temperature distribution.

Introduction

All manuscripts must be in English, also the table and figure texts, otherwise we cannot publish your paper. Please keep a second copy of your manuscript in your office. When receiving the paper, we assume that the corresponding authors grant us the copyright to use the paper for the book or journal in question. Should authors use tables or figures from other Publications, they must ask the corresponding publishers to grant them the right to publish this material in their paper.

It will be very nice to take a long hot bath when you come home with a tired body. However, the bathtub in our bathroom is a simple water containment vessel, in which the water can not keep the constant temperature. So the method was put forward—using a constant trickle of hot water from the faucet to reach the bathing water. In this case, it is necessary to find a best way to maximize both the utilization rate of water and the constant temperature. From the practical considerations, we need to analyze the effect of many factors. Thus we develop a model to show the temperature distribution of the bathtub water in space and time.

Temperature Changes with Time and Space

In order to discuss the temperature of the bathtub water in space and time, we use the first law of thermo dynamics, Fourier’s Law and Calorie formula to create a new model.

- the first law of thermodynamics
 \[Q = Q_1 + Q_2 \]
 Where Q, Q1 and Q2 respectively represent the heat absorbed by temperature change, the heat flowing through the boundary and the heat provided of heat reservoir.
- Fourier’s Law
 \[dQ = -k(x, y, z) \frac{\partial x}{\partial y} ds dt \]
 Where k(x; y; z) represent the thermal transmissivity of material.
- Derivation of the heat conservation equation
 Simply take any S of a smooth closed surface Ω in the object G, discussing the heat change law of Ω. The absorbed (or released) heat of the temperature of each point in the Ω changed from u(x; y; z; t1) to u(x; y; z; t2), shall be equal to the sum of the heat flows into (or out of) Ω through surface S and the heat provided (or absorption) by heart source during t1 to t2.

(1) The heat flows into Ω through surface S (Q_1).
Based on Fourier’s Law, the heat flows into Ω through surface S during t_1 to t_2 is as follows:

$$Q = \int_{t_1}^{t_2} \int_{\Omega} k(x, y, z) \frac{\partial u}{\partial n} ds dt$$

Based on Gauss Formula

$$\int_{\Omega} \text{div} A dxdydz = \int_{s} AndS_s$$

Q_1 is as follows

$$Q_2 = \int_{t_1}^{t_2} \int_{\Omega} \left(\frac{\partial}{\partial x}(k \frac{\partial u}{\partial x}) + \frac{\partial}{\partial y}(k \frac{\partial u}{\partial y}) + \frac{\partial}{\partial z}(k \frac{\partial u}{\partial z}) \right) dV dt$$

(2) the heat provided (or absorption) by heat source (Q_2) during t_1 to t_2

$$Q_i = \int_{t_i}^{t_{i+1}} \int_{\Omega} F(x, y, z, t) dV dt$$

Where $F(x; y; z; t)$ represent the intensity of heat source, that is, the quantity of heat released from the unit volume within the unit time.

Finally we get the formula in accordance with our model

$$\int_{t_i}^{t_{i+1}} \int_{\Omega} \left(\frac{\partial}{\partial x}(k \frac{\partial u}{\partial x}) + \frac{\partial}{\partial y}(k \frac{\partial u}{\partial y}) + \frac{\partial}{\partial z}(k \frac{\partial u}{\partial z}) \right) + F(x, y, z, t)$$

Two-dimensional (2-D) heat conduction equation

To simplified model, we projected the temperature distribution equation to the three plane [1] X-Y plane, Y-Z plane and X-Z plane.

The temperature distribution equation on X-Y plane

$$\frac{\partial U}{\partial t} - k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = f(x, y, z)$$

Boundary Conditions

$$\left\{ \begin{array}{l} \frac{\partial u}{\partial x} + hT \big|_{\partial x} = hT_{out} \\ \frac{\partial u}{\partial x} \big|_{x = \pm \frac{a}{2}} = hT_{out} \\ \frac{\partial u}{\partial y} + hT \big|_{y = \frac{b}{2}} = hT_{out} \\ \frac{\partial u}{\partial y} \big|_{y = \pm \frac{b}{2}} = hT_{out} \end{array} \right.$$
The temperature distribution on the three plane

Figure 1: the temperature distribution and gradient on the X-Y plane

Figure 2: the temperature distribution and gradient on the Y-Z plane

Figure 3: the temperature distribution and gradient on the X-Z plane

The temperature distribution on the three plane
Conclusions

We can find that under certain time scope and temperature terms both the variance of the temperature and the variance variation are very small, the temperature distribution of the bathtub basically doesn’t vary with time.

References
