Bending Analysis of Curved Orthotropic Plate and Its Application in Curved Bridges on Slope

Shuchen HU
School of Highway, Chang’an University
Xi’an 710064, Shaanxi, China
E-mail: shuchenhu@126.com

Zhenjia WANG
School of Highway, Chang’an University
Xi’an 710064, Shaanxi, China
E-mail: asdwangzhenjia@163.com

Dalin HU
School of Highway, Chang’an University
Xi’an 710064, Shaanxi, China
E-mail: dlhu@gl.chd.edu.cn

Abstract—Based on the Kirchhoff’s thin plate hypothesis and static equilibrium of element, the governing differential equations of curved orthotropic plate in polar coordinates which is subjected to normal and tangential surface load are derived. According to the governing differential equations and boundary conditions, analytical solutions of displacements and internal forces for a simple supported curved plate on slope (longitudinal gradient is β) under vertical uniform distribution load are obtained. With the computer program based on the formula, the results of the displacements and internal forces for the bridge under given conditions are achieved. The results showed that the bending behavior was not affected by the tangential components when β is small. The differential equations for bending analysis and their solutions represent a new way for describing a simple supported curved bridge on slope.

Keywords—curved bridge on slope; curved orthotropic plate; bending analysis; the static equilibrium equation; analytical solution; numerical solution

I. INTRODUCTION

There are a lot of studies[1] on the application of the theory of curved orthotropic plate for the analysis of curved bridge, but the different studies are somewhat similar for the complication of the problem and the detailed report[2] still took the hypotheses of $\mu = \sqrt{\mu_x \mu_y}$ and $D_x = \sqrt{D_{xy}}$. Chinese scholars have made thorough studies[3,4,5] on the simply supported curved bridge of ribbed plate with the theory of comparative orthotropic curved plate in which the hypotheses $\mu_x = \mu_y = 0$ were taken. In this paper, based on the static equilibrium condition, the bending differential equations of the curved orthotropic plate under normal and tangential loads are obtained and the bending problem for the curved bridge on slope under vertical loads is solved with the equations.

II. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Drawing a parallel between the superstructure of curved bridges on slope and the orthotropic plate according with Kirchhoff’s hypotheses to solve the problem of curved plate quasi-static equilibrium. To solve the problem of the curved bridge on slope, first we select the Cartesian coordinates xyz and let the middle surface coincide with the xoy plane and replace the tangential surface forces of the plate with the forces on the middle surface and the moments, and propose a free body diagram as shown in Fig. 1. The governing equations are established with the static equilibrium of the forces and the moments in different direction, after rearrangement we have,

$$\sum F_x = 0, \quad \frac{\partial N_x}{\partial r} + \frac{1}{r} \frac{\partial N_{xy}}{\partial \theta} + \frac{N_x - N_y}{r} + q_r = 0$$ \[1\]

$$\sum F_y = 0, \quad \frac{1}{r} \frac{\partial N_y}{\partial \theta} + \frac{\partial N_{xy}}{\partial r} + 2N_y - 2N_x + q_\theta = 0$$ \[2\]

$$\sum M_z = 0, \quad N_\theta = N_y$$ \[3\]

$$\sum F_z = 0, \quad \frac{1}{r} \frac{\partial Q_y}{\partial \theta} + \frac{\partial Q_{xy}}{\partial r} + Q_y + q_z = 0$$ \[4\]

$$\sum M_\theta = 0, \quad \frac{\partial M_{xy}}{\partial r} + \frac{\partial M_{y\theta}}{\partial \theta} + M_{xy} + M_{y\theta} - \frac{h}{2} q_\theta - Q_\theta = 0$$ \[5\]
\[\sum M_r = 0 \quad \frac{\partial M_r}{\partial r} + \frac{1}{r} \frac{\partial M_r}{\partial \theta} + \frac{M_r - M_{\theta \theta}}{r^2} + q_n - Q_r = 0 \quad [6] \]

Equation [1] and equation [2'] are the static equilibrium equations of the curved bridge under the forces on the middle and the solution for the plane stress problem can be given from the equations with coordinate compatibility conditions and boundary conditions[6], which are not discussed here.

Substituting [7]~[10] into equation [4'], obtain

\[\quad [4''] \]

Let \(2D = D_{rr} + D_{\theta \theta} + 4D_{r \theta} \), and note that the normal practice in the bending analysis of orthotropic plate takes \(D_{rr} = D_{\theta \theta} \), hence equation [4''] is simplified as.

\[\quad [15] \]

Considering simply supported curved bridge on slope of single span, the boundary conditions for equation [15] are that two radial sides are simply supported and two curved sides are supported free, i.e.

For the simply supported sides, we have
\[
\begin{align*}
W(r, \theta)_{|r=a}=0 & \quad \quad W(r, \theta)_{|r=b}=0 \\
M_{\theta}(r, \theta)_{|r=a}=0 & \quad \quad M_{\theta}(r, \theta)_{|r=b}=0 \\
\end{align*}
\]

For the free side, we have
\[
\begin{align*}
M(r, \theta)_{|r=a}=0 & \quad \quad M(r, \theta)_{|r=b}=0 \\
V_{r}(r, \theta)_{|r=a}=0 & \quad \quad V_{r}(r, \theta)_{|r=b}=0 \\
\end{align*}
\]

III. Solution of the Problem

A. Solution for Homogeneous Equations

The homogeneous equation for equation [15] is
\[
\begin{align*}
\frac{\partial^4 W}{\partial r^4} + 2\frac{\partial^2 W}{\partial r^2 \partial \theta^2} + \frac{\partial^4 W}{\partial \theta^4} = 0 \\
\end{align*}
\]

Substituting the expression above into equation [18],

\[
\begin{align*}
\sum_{n=1}^{\infty} R_n (r) \sin \frac{n \pi \theta}{\phi} \\
\end{align*}
\]

The general solution for the homogeneous equation is

\[
W_n (r, \theta) = \sum_{i=1}^{n} R_i (r) \sin \frac{n \pi \theta}{\phi}
\]

Substituting the expression above into equation [18], give

\[
\sum_{n=1}^{\infty} R_n (r) \sin \frac{n \pi \theta}{\phi}
\]

Where

\[
Z = \delta^2 + 2a \delta r \quad \quad Y = \delta^2 2 - \left(2 \delta^2 + 2 \alpha \delta \right) r^2
\]

Let \(R_n (r) = r^n \) and substitute into equation [19], obtain the roots of characteristic equation

\[
T_{12,3,4} = 12^{\sqrt{\frac{1+ \delta}{2}} + \frac{\alpha-1}{2} \delta/2} + \sqrt{\frac{1- \delta}{2} + \frac{\alpha+1}{2} \delta/2}
\]

Hence

\[
W_n (r, \theta) = \sum_{i=1}^{n} \left(C_n r^n \right) \sin \frac{n \pi \theta}{\phi}
\]

B. Particular solution under vertical uniform distribution load

For the coordinates system shown in Fig. 2, the normal and tangential loads of plate under u.d.l. q are

\[
\begin{align*}
q_n = q \cos \beta \\
q_r = -q \sin \beta \sin \theta \\
q_\theta = -q \sin \beta \cos \theta
\end{align*}
\]

Figure 2. General coordinates for plate bridge

Substituting expression [22] into equation [15], gives

\[
\begin{align*}
\frac{\partial^4 W}{\partial r^4} + 2\frac{\partial^2 W}{\partial r^2 \partial \theta^2} + \frac{\partial^4 W}{\partial \theta^4} = 0 \\
\end{align*}
\]

Assume the solution satisfied the boundary condition for radial sides is

\[
W_n (r, \theta) = \sum_{i=1}^{\infty} D_i r^i \sin \frac{n \pi \theta}{\phi}
\]

Substituting expression [24] into equation [23] and using orthogonality of sine series, obtain

\[
\begin{align*}
D_i = \frac{2 \cos \beta(1- \cos n \pi r)}{n \pi \phi (72-8Z+1)D_n} \\
W_n (r, \theta) = \sum_{i=1}^{\infty} \frac{2 \cos \beta(1- \cos n \pi r)}{n \pi \phi (72-8Z+1)D_n} \sin \frac{n \pi \theta}{\phi}
\end{align*}
\]

C. General Solution of the Equation and the Expression for Internal Forces

Under the vertical u.d.l. q, the general solution for equation [15] is

\[
W(r, \theta) = W_n (r, \theta) + W_1 (r, \theta)
\]

Then equation [25] can be expressed as

\[
W(r, \theta) = \sum_{i=1}^{\infty} \left[C_i r^i + D_i r^i \right] \sin \frac{n \pi \theta}{\phi}
\]

Let \(r = \rho \phi \), \(C_i = C_i \phi^{i} \), \(D_i = D_i \rho^{i} \), where \(\rho = a + (b-a)/2 \),

\[
W(r, \theta) = \sum_{i=1}^{\infty} \left[C_i \phi^{i} + D_i \rho^{i} \right] \sin \frac{n \pi \theta}{\phi}
\]

From equation [25], we can find displacement partial derivative for computing internal forces and reactions.

Let \(\frac{\partial^2 W}{\partial r^2 \partial \theta} = W_1 (r, \theta) \), obtain

\[
\frac{\partial^2 W}{\partial r^2 \partial \theta} = W(r, \theta)
\]
Substituting the above expressions into equations [4]–[7], give

\[
M_i = -D_i \left[W(2,0) + \mu_i \left(W(1,0)/\rho \sigma + W(0,2)/\rho^3 r^2 \right) \right]
\]

\[
M_{\theta\theta} = -D_{\theta\theta} \left[W(1,0)/\rho \sigma + W(0,2)/\rho^3 r^2 + \mu W(2,0) \right]
\]

\[
M_{\phi\phi} = -2D_{\phi\phi} \left[W(1,1)/\rho \sigma - W(0,1)/\rho^3 r^2 \right]
\]

\[
Q_i = -D_i \left[W(3,0) + W(2,0)/\rho \sigma \right]
\]

\[
Q_{\theta\theta} = -D_{\theta\theta} \left[W(1,0)/\rho \sigma + W(0,2)/\rho^3 r^2 + \mu W(2,0) \right]
\]

\[
Q_{\phi\phi} = -2D_{\phi\phi} \left[W(1,1)/\rho \sigma - W(0,1)/\rho^3 r^2 \right]
\]

\[
V_i = -D_i \left[W(2,1)/\rho \sigma - W(0,1)/\rho^3 r^2 \right]
\]

\[
V_{\theta} = -D_{\theta} \left[W(2,1)/\rho \sigma - W(0,1)/\rho^3 r^2 \right]
\]

\[
V_{\phi} = -D_{\phi} \left[W(2,1)/\rho \sigma - W(0,1)/\rho^3 r^2 \right]
\]

\[
D. \text{ Determination of Arbitrary Constants } C_i
\]

Arbitrary constants \(C_i (i=1,2,3,4) \) can be determined by the boundary conditions of the two free sides, if we use dimensionless argument, equation [17] can be expressed as

\[
\begin{bmatrix}
M_i |_{\rho=\eta_i=0} \\
V_i |_{\rho=\eta_i=0}
\end{bmatrix} = \begin{bmatrix}
M_i |_{\rho=\theta_i=0} \\
V_i |_{\rho=\theta_i=0}
\end{bmatrix} = \begin{bmatrix}
X_i L_1 + X_i L_2 + X_i L_3 + X_i L_4 = F_i \\
X_i L_5 + X_i N_2 + X_i L_7 + X_i L_9 = F_2
\end{bmatrix}
\]

\[
X_i N_3 + X_i N_4 + X_i N_5 + X_i N_6 = F_3
\]

\[
X_i L_5 + X_i N_2 + X_i N_3 + X_i N_4 = F_4
\]

Where the coefficients and constant terms

\[
L_i = \frac{\alpha}{\eta_i^2} \left(T_i^2 - T_i \mu T_i - \frac{\mu^2}{\eta_i^2} \right)
\]

\[
L_{i\theta} = \frac{\eta_i}{\alpha} \left(T_i^2 - T_i \mu T_i - \frac{\mu^2}{\eta_i^2} \right)
\]

\[
N_i = \frac{\alpha}{\theta_i^2} \left(-D_i T_i T_i^2 + (D_i T_i - D_i) \frac{\theta_i^2}{\eta_i^2} \right)
\]

\[
N_{i\theta} = \frac{\theta_i}{\alpha} \left(-D_i T_i T_i^2 + (D_i T_i - D_i) \frac{\theta_i^2}{\eta_i^2} \right)
\]

\[
F_i = -D_i (a_i/\eta_i) \left(12 + 4 \mu - \mu \frac{n_i^2 \pi^2}{\eta_i^2} \right)
\]

\[
F_{i\theta} = \frac{b_i}{a_i} F_i
\]

\[
F_{i\theta} = -D_i (a_i/\theta_i) \left(4 \mu - \mu \frac{n_i^2 \pi^2}{\theta_i^2} \right)
\]

Where \(D' = D_0 + 2D_1 \), \(D'' = D' + D_0 \)

To determine constant terms \(X_i \), we need to analyze characteristic roots \(T_i \) in equation [20], let

\[
A = \sqrt{\frac{1 + \delta^2}{2} + \frac{\alpha + 1}{2} \delta \xi}
\]

\[
B = \sqrt{\frac{1 - \alpha}{2} \delta \xi - \frac{1 + \delta^2}{2}}
\]

\[
S = \sqrt{\frac{1 + \delta^2}{2} + \frac{\alpha - 1}{2} \delta \xi}
\]

\[
Z = \sqrt{\frac{1 + \delta^2}{2} + \frac{\alpha - 1}{2} \delta \xi}
\]

When \(Z > A \), \(T_i \) are real roots, i.e.

\[
T_i = 1 + A + S \\
T_i = 1 + A - S
\]

Substitute \(T_i \) into equation [27] and equation [28] and then into equations [26] to solve for \(X_i \), and then substitute \(C_i = X_i \) into the expression of displacements and internal forces and obtain the solution of the problem.

When \(Z < 0 \), \(T_i \) are complex roots, i.e.

\[
T_i = 1 + A + iB \\
T_i = 1 + A - iB
\]

\[
T_i = 1 - A + iB \\
T_i = 1 - A - iB
\]

Expressing the coefficients in equation [26] as \(x + iy \) and comparing the both sides of the simultaneous equations, we can divide the equations [26] into two simultaneous
equations according to the principle of equivalence in real parts and imaginary parts, i.e.,

\[[A'][Z] = [F] \] \hspace{1cm} [26']

\[[A'][Z] = [0] \] \hspace{1cm} [26'']

Where \([A']\) and \([A']\) are the matrices of real parts and imaginary parts of \(L\) and \(N\), respectively, \([F]\) is the one column matrix of the primary equations. Equations \([26''\]) are homogeneous equations and from which zero and uncertain solution can be obtained. We can determine the constants with equation \([26']\) and then substitute them into expressions of displacements and internal forces for the solution of the problem. The elements of matrix \([A']\) are expressed with \(L\)’ and \(N\)’ (Corresponding to \(L\) and \(N\)) as

\[L'_i = (a/r) \cos \left(B \ln (a/r) \right) ZA - \sin \left(B \ln (a/r) \right) YA \]

\[L'_y = (a/r) \cos \left(B \ln (a/r) \right) ZB - \sin \left(B \ln (a/r) \right) YB \]

\[L'_i = L'_y \]

Expressions of \(L'5 \sim L'8\) can be obtained with substituting a into b in expression \(L'_i = L'_y\)

\[N'_i = (a/r)^{r^2} \cos \left(B \ln (a/r) \right) ZC - \sin \left(B \ln (a/r) \right) YC \]

\[N'_i = (a/r)^{r^2} \cos \left(B \ln (a/r) \right) ZD + \sin \left(B \ln (a/r) \right) YD \]

\[N'_i = (a/r)^{r^2} \cos \left(B \ln (a/r) \right) ZE + \sin \left(B \ln (a/r) \right) YE \]

\[N'_i = (a/r)^{r^2} \cos \left(B \ln (a/r) \right) ZF + \sin \left(B \ln (a/r) \right) YF \]

Expressions of \(N'5 \sim N'8\) can be obtained with substituting a into b in expression \(N'_i = N'_y\), where

\[ZA = (1+A)^2 - B^2 - (1+A) + \mu_r \left(1+A - \frac{n^2 \pi^2}{\phi^2} \right) \]

\[ZB = (1-A)^2 - B^2 - (1+A) + \mu_r \left(1-A + \frac{n^2 \pi^2}{\phi^2} \right) \]

\[ZC = -D \left[(1+A)^2 - 3(1+A)B^2 + 2B^2 - 2(1+A)^2 + (1+A) \right] \]

\[+ \frac{n^2 \pi^2}{\phi^2} \left[D(1-A) - D \right] + D \left(1+A \right) \]

\[ZD = -D \left[(1+A)^2 - 3(1+A)B^2 - 2B^2 - 2(1+A)^2 + (1+A) \right] \]

\[+ \frac{n^2 \pi^2}{\phi^2} \left[D(1-A) - D \right] + D \left(1+A \right) \]

\[ZE = -D \left[(1-A)^2 + 3(1-A)B^2 - 2(1-A)^2 + (1-A) - 2B^2 \right] \]

\[+ \frac{n^2 \pi^2}{\phi^2} \left[D(1-A) - D \right] + D \left(1+A \right) \]

\[ZF = -D \left[(1-A)^2 + 3(1-A)B^2 - 2(1-A)^2 + (1-A) - 2B^2 \right] \]

\[+ \frac{n^2 \pi^2}{\phi^2} \left[D(1-A) - D \right] + D \left(1+A \right) \]

Figure 3. Dimensions of curved bridge

IV. NUMERICAL EXAMPLE

Fig. 3 shows a simply supported curved plate bridge \((\beta = 0)\) subjected to a u.d.l. \(q=1.5\)kN/m², \(E_r=3.0\times10^7\)MPa, \(E_r=2.7\times10^6\)MPa, \(\mu_r=0.15, G=1.22\times10^7\)MPa, rotational angle \(\phi=0.6\). Inner radius \(a=21.0\)m, outer radius \(b=36.0\)m, plate thickness \(h=0.6\)m. With the computer program based on the above formula, the displacements and internal forces for the bridge were computed. The displacements and internal forces were plotted as shown in Fig. 4.
V. CONCLUSION

(1) The deflection differential equations in polar coordinates for orthotropic curved plate under normal and tangential surface loads were derived, which can be used for the bending analysis of material or structure orthotropic curved plate and develop a new way for the computation of curved bridge on slope.

(2) From the solution, the tangential components of loads for curved bridge on slope under vertical u.d.l. do not affect bending behavior of the bridge, since the solution is given under small deformation hypothesis. For the bridge on deeper slope, middle surface force is larger and the interaction between the middle surface force and bending effect must be considered.

(3) The solution can be degenerated into the solution for isotropic curved plate and the approximate solution for orthotropic curved plate in engineering.

(4) In the paper, only simply supported curved plate on slope under vertical u.d.l. is considered. For other boundary conditions (fixed and or continuous to multispan) and complex loading condition, the analysis is different.

ACKNOWLEDGMENT

This paper is supported by the fund from basic research project of communications of China (Project No. 2013 319 812 100).

REFERENCE

