The Single-vector Compressed Storage of Tangent Matrix

Yongyan Hou1, a, Zhiguo Ren2, b and Lanqing Wu1, c

1Zhixing college of Northwest normal University, Lanzhou 730070, China; \\
2School of Electronics and Information Engineering, Lanzhou City University, Lanzhou 730070, China.

a498264224@qq.com, bren_zhiguo@qq.com, c2874767408@qq.com

Keywords: The compressed storage, single-vector, the tangent matrix.

Abstract. Matrix is a mathematical object, commonly used in scientific computing and engineering calculation. In the data structure we are not interested in data itself, but how to store the elements in the matrix, and make the various operations can run effectively. The main purpose of the compressed storage is to make more of the same nonzero elements share the same storage unit according to the distribution of matrix element, while the zero elements don't allocate storage space. In this paper, we studied the single-vector compressed storage problems of tangent matrix, and obtained the row and column priority compressed storage address mapping function. These two kinds of compressed storage have a high compression ratio. These conclusions hope to provide the basis theory of data compression storage for the scientific research workers.

1. Introduction

Matrix is a mathematical object, commonly used in scientific computing and engineering calculation. We are not interested in data type or value in the data structure, but how to store the elements in the matrix. When programming in a high-level language, often use a two-dimensional array to store the elements in the matrix.

If adopt this method of storage, we can random access each data element, thus can easily realize operations of the matrix. But, when there are a large number of zero elements in the matrix and have regular distribution, if we still use a two-dimensional array to store the matrix, a particular element will consume large amounts of storage unit. For high order matrix, the storage method is not only waste storage unit, but also takes a lot of time for invalid computation, it is obviously not desirable. In order to save the storage space, we need to compress storage for such matrix.

The main purpose of the compressed storage is to make more of the same nonzero elements share the same storage unit according to the distribution of matrix element, while the zero elements don't allocate storage space. In this paper, we studied the compressed storage problems of tangent matrix, and obtained the corresponding storage address mapping function.

1. Tangent matrix is a cut matrix.
2. In cut ((a, b) (c, d)), a,b,c,d should meet the following relationship.

\[
1 < a \leq m, \ b = 1, \ c = m, \ d < n
\]

For a given m rows n columns (m<n) of the matrix A, the original matrix can be divided into two parts, the first element of the dividing line is the \(i'' \) (\(2 \leq i'' \leq m-1 \)), and it is in the first column. There are
some different data elements in the upper part above the diagonal, the data elements in the lower part of the diagonal are all zero or the same integer. As shown in figure 1:

\[
A_1 = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
 0 & a_{32} & a_{33} & a_{34} & a_{35}
\end{bmatrix} \quad A_2 = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} & a_{17} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} \\
 0 & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} & a_{37} \\
 0 & 0 & a_{43} & a_{44} & a_{45} & a_{46} & a_{47}
\end{bmatrix} \quad A_3 = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} & a_{17} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} \\
 0 & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} & a_{37} \\
 0 & 0 & a_{43} & a_{44} & a_{45} & a_{46} & a_{47}
\end{bmatrix}
\]

Fig.1 the results of compression storage at n and m

For a tangent matrix which has m row n column, the data elements can be compressed into a one-dimensional array B by row and column priority.

When the first element of the dividing line is the \(i''\), and it is in the first column, that is \(a_{i''1}\). It can be compressed to the one-dimensional array B, the size is:

\[
k = \frac{(2 \times n - m + i'') \times (m - i'' + 1) + (i'' - 1) \times n}{2}
\]

The Single-vector Compressed Storage of Tangent Matrix

2. Row Priority Compressed Storage

For \(m=3, n=4\) on the tangent matrix, as shown in figure2:

\[
A_1 = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 0 & a_{32} & a_{33} & a_{34}
\end{bmatrix} \quad B = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{21} & a_{22} & a_{23} & a_{24} & a_{31} & a_{32} & a_{33} & a_{34}
\end{bmatrix}
\]

0 1 2 3 4 5 6 7 8 9 10

Fig.2 the results of compression storage at \(n=4\) and \(m=3\)

For the tangent matrix as shown in figure 2, it can be compressed into one-dimensional array B, the size is 11. For a data element \(a_{ij}\) in tangent matrix \(A_1\), it compressed into one-dimensional array B in row priority, if the element of \(a_{ij}\) in \(A_1\) response element is \(b_k\). It can be seen that \(k\) is a function of \((i,j,i'',n)\), \(k\) is a function that can be computed:

\[
k = \begin{cases}
\frac{(i - 1) \times 4 + j}{2}, & i < 2 \\
\frac{(i - 1) \times 4 + j}{2}, & i \geq 2
\end{cases}
\]

For \(m=4, n=5\) on the tangent matrix, as shown in figure3:

\[
A_2 = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
 a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
 0 & a_{42} & a_{43} & a_{44} & a_{45}
\end{bmatrix} \quad B = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17
\end{bmatrix}
\]

Fig.3 the results of compression storage at \(n=5\) and \(m=4\)

For the tangent matrix as shown in figure 3, it can be compressed into one-dimensional array B, the space size is 19. For a data element \(a_{ij}\) in tangent matrix \(A_2\), it compressed into one-dimensional array B, if the element of \(a_{ij}\) in \(A_2\) response element is \(b_k\). It can be seen that \(k\) is a function of \((i,j,i'',n)\), \(k\) is a function that can be computed:

\[
k = \begin{cases}
\frac{(i - 1) \times 5 + j}{2}, & i < 3 \\
\frac{(i - 1) \times 5 + j}{2}, & i \geq 3
\end{cases}
\]

Through the observation and analysis of several simple examples, and some specific reasoning and calculation, we can get the following conclusion:
For a tangent matrix A which has m rows n columns, it can be compressed into the one-dimensional array B, the space size of k is:

\[
k = \frac{(2 \times n - m + i^*) \times (m - i^* + 1) + (i^* - 1) \times n}{2}
\]
(3)

For a data element \(a_{ij}\) in tangent matrix A, it compressed into one-dimensional array B, if the element of \(a_{ij}\) in A response element is \(b_k\). It can be seen that k is a function of \((i,j,i'',n)\), k is a function that can be computed:

\[
k = \begin{cases}
(i - 1) \times n + j, & i < i^* \\
(i^* - 1) \times n + \frac{(2 \times n + i'' - i + 1) \times (i - i^*)}{2} + j - i + i', & i \geq i^*
\end{cases}
\]
(4)

3. Column Priority Compressed Storage

For \(m=3,n=4\) on the tangent matrix, as shown in Figure 4:

\[
A_1 = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
0 & a_{32} & a_{33} & a_{34}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
a_{11} & a_{21} & a_{12} & a_{22} & a_{32} & a_{13} & a_{23} & a_{33} & a_{14} & a_{24} & a_{34}
\end{bmatrix}
\]

Fig. 4 The results of compression storage at \(n=4\) and \(m=3\)

For the tangent matrix as shown in Figure 4, it can be compressed into one-dimensional array B, the space size is 11. For a data element \(a_{ij}\) in tangent matrix A, it compressed into one-dimensional array B, if the element of \(a_{ij}\) in A response element is \(b_k\). It can be seen that k is a function of \((i,j,i'',m,n)\), k is a function that can be computed:

\[
k = \begin{cases}
(2 + j + 2 - 1 - 1) \times (j - 1) + i, & i \leq 3 - 2 + 1 \\
\frac{(2 + 3) \times (4 - 3 - 2 + 2)}{2} + [j - (4 - 3 - 2 + 2)] \times 3 + i, & i \geq 3 - 2 + 1
\end{cases}
\]
(5)

For \(m=3, n=4\) on the tangent matrix, as shown in Figure 4:

\[
A_2 = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
0 & a_{42} & a_{43} & a_{44} & a_{45}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
a_{11} & a_{21} & a_{12} & a_{22} & a_{32} & a_{13} & a_{23} & a_{33} & a_{14} & a_{24} & a_{34} & a_{15} & a_{25} & a_{35} & a_{45} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17
\end{bmatrix}
\]

Fig. 5 The results of compression storage at \(n=5\) and \(m=4\)

For the tangent matrix as shown in Figure 5, it can be compressed into one-dimensional array B, the space size is 19. For a data element \(a_{ij}\) in tangent matrix A, it compressed into one-dimensional array B, if the element of \(a_{ij}\) in A response element is \(b_k\). It can be seen that k is a function of \((i,j,i'',m,n)\), k is a function that can be computed:

\[
k = \begin{cases}
(3 + j + 3 - 1 - 1) \times (j - 1) + i, & i \leq 4 - 3 + 1 \\
\frac{(3 + 4) \times (5 - 4 - 3 + 2)}{2} + [j - (5 - 4 - 3 + 2)] \times 4 + i, & i \geq 4 - 3 + 1
\end{cases}
\]
(6)

Through the observation and analysis of several simple examples, and some specific reasoning and calculation, we can get the following conclusion:

For a tangent matrix A which has m rows n columns, it can be compressed into one-dimensional array B, the space size of k is:

\[
k = \frac{(2 \times n - m + i^*) \times (m - i^* + 1) + (i^* - 1) \times n}{2}
\]

(7)

For a data element \(a_{ij}\) in tangent matrix A, it compressed into one-dimensional array B, if the element of \(a_{ij}\) in A response element is \(b_k\). It can be seen that k is a function of \((i,j,i'',m,n)\), k is a function that can be computed:

\[
k = \begin{cases}
(i^* + j + i'' - 1 - 1) \times (j - 1) + i, & i \leq m - i^* + 1 \\
\frac{(i^* + m) \times (n - m - i'' + 2)}{2} + [j - (n - m - i'' + 2)] \times m + i, & i \geq m - i^* + 1
\end{cases}
\]
4. Summary

In this paper, we studied the single-vector compressed storage problems of tangent matrix, and obtained the row priority compressed storage address mapping function of the single-vector compressed about the tangent matrix (formula 4), also obtained the column priority compressed storage address mapping function of the single-vector compressed storage about the tangent matrix (formula 7).

In a matrix, the data elements can be compressed with a single-vector, its compression ratio can be obtained. \(CR = \frac{1 - \left(\frac{[(2 \times n - m + i''') \times (m - i''') + 1]}{2} + (i''' - 1) \times n \right)}{m \times n} \times 100\% \). For example: In a 100-order square matrix, its compression ratio is:

\[
CR = 1 - \frac{[(2 \times 100 - 100 + 10) \times (100 - 10 + 1) / 2 + (10 - 1) \times 100]}{100 \times 100} \times 100\% = 40.95\%.
\]

It can be seen that these two kinds of compressed storage have a high compression ratio. These conclusions hope to provide the theory basis of data compression storage for the data processing and scientific computing algorithm design.

References:
