Building Towards Expertise

Marcel Martin1, a, Paul Ouellet2, b, Zeesham Aslam3, c

1 Université de Sherbrooke, Sherbrooke, Quebec, Canada; Dr Everett Chalmers Hospital, Horizon Health Authority, New Brunswick, Canada; Department of Surgery, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Vitalité Health Authority, North West Zone, New Brunswick; Department of Critical Care – Internal Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
\aMarcel.Martin@Usherbrooke.ca, bpo1953@me.com, cZeeaslam@me.com

Keywords: Continuous medical education, practical knowledge decision-making, simulation laboratory and post-simulation era, neuroscience with modulators, mental practice and artificial intelligence.

Abstract. To build towards expertise, one has to accept to modify his way of practicing, including: 1) A need to reflect on and about the action and near the action in ‘in situ’ laboratory, 2) A continuous concern about our competence to practice, (presently medical education is in fact discontinuous with periods of incompetence) 3) Tireless effort to combine metacognition and mental practice in a trans-disciplinary approach, 4) Practice cannot be complete without adding research with neuroscience, understanding neuroplasticity, modulation and artificial intelligence.

Introduction

Continuous education is a mandatory condition of practice ‘sine qua non’ to maintain at least a competence in ‘complex system’ like medicine [1, 2]. Continuous education should not mean intermittent one with inappropriate activities to learn and retain during these active practicing years. The present system is based on ‘one fits all’: ATLS, ACLS, FCCS and other similar sessions. Retrospectively, the pre doctoral ‘Problem Based Learning’ (PBL) approach alone has been an incomplete one mainly used for decision-making and theoretical knowledge training [3]. The practical field of procedural knowledge has been left aside in curriculum like the development of spatial intelligence [4]. Spatial intelligence development has been shown to help in mental representation and therefore must be included in the neuromodulation program.

These reductionist aspects of our curriculum in medicine led to an incomplete metacognition development [5] where procedural knowledge, third space visualisation, anatomy and spatial intelligence were neglected. Mental practices should even replace the present simulation laboratory concept.

Flexner [6] in his time mandates continuity in pre/postdoctoral and continuous education curriculum. This remained only a dream and continuous education has now to be rebuilt again with a complete change in philosophy [7]. In our present work, we insisted on simulation laboratory [8] as an opening to an integration of procedural knowledge, mixed with decision-making, intuition, uncertainties [9, 10] empathy, resilience [11], development of spatial intelligence and creativity. We feel all of the above must be approached in simulation with a global philosophy including technical and non-technical skills and kinetics of decision-making, interdisciplinary approach for both procedural and theoretical knowledge. All those learning elements are included in complex scenarios.

From the world of simulation, the second part of the revolution is the inclusion of neuroscience [12] in cognitive psychology to develop a better metacognition [13] and allow a personalised approach in the development of expertise [14]. The neuroenhancement phenomenon [15], based on neuroplasticity [16] and epigenetics [17] needs to be included for the understanding of neuroplasticity,
connectomics [18] and neuroimaging [19]. The final aspect of this revolution must be the ‘Mental
Practice’ [20] with the understanding of ‘Motor to Mental Gradient’ in skill learning [21, 22].

Skill learning should include gradient between cognition, plasticity, epigenetics [23], modification
following physical exercise [24] and their influence on learning. All of these elements will finally
help in understanding metacognition and contextualisation of knowledge. We are witnessing a post
simulation era where mental world and practice with virtual reality would replace the actual
simulation laboratory.

One appropriate question is raised. Why such a presentation on cognition at a biotechnology
congress? Three main facts transpire.

1- In cognitive psychology, we are utilising more and more ‘Technology-Enhanced Education’
(TEE).

2- Our learning approach in medicine is partly transferable to ‘Science, Technology, Engineering
and Mathematics’ (STEM) and biotechnology education. Therefore it is fair to say that in complex systems, learning should more and more be focused on a trans disciplinary approach.

Simulation

Five main subjects are thoroughly discussed in Simulation laboratory literature:

1- Scenarios with more or less high fidelity,
2- Complex scenarios,
3- Near work space teaching (in situ) with debriefing [25],
4- Teaching in a distributed fashion [26], with or without cognitive task analysis [27]
5- Decomposition of movements [28], consisting of multidisciplinary approach [29] with
videocameras [30] for further modeling [31].

For the last twenty years these laboratories have been the revolutionary tools in teaching medicine.
Digging on metacognition and cognitive psychology and because of the understanding of the Motor
to Mental Gradient in skill learning in sports, mental representation and mental practice started
recently to complement the physical practice and to replace it almost completely. Parallel to this
approach, neuroscience has helped to understand neuroplasticity, epigenetics and connectomics.
Neuroimaging offers a possible follow-up on the road towards expertise.

Mental Practice and Neuroenhancers

Mental practice and representation with all the other neuroenhancers described recently at least five
elements; three of which are environmental (1-3) and two are structural (4-5)

1- Exercise [24]
2- Practice [32]
3- Videogames [33]
4- Biochemical approach with methylene blue or methylphenidate [34]
5- Electro-mechanical stimulation of the brain [35]

All of these mandate a strategic approach [36] and a strict neuroethics [37]. With the recent
description of asymptotic [38] curve of expertise, the use of a global strategic approach will
contribute to achieve expertise in complex systems. In the coming years, the methodology for
efficient learning will change drastically. Result evaluation is mandatory. Recent literature on
cognitive psychology is rapidly growing. One example is with the use of music instrument in learning
toward neuroplasticity [39], coupled with physical exercise [40] and mental practice with
mindfulness meditation [41] to control emotional stress and learning. Among the enhancement
literature, Hardy et al. proved the effect of cognitive enhance learning (Videogame Lumosity) in the
Grand Index Score being enhanced in speed of processing, short term memory, working memory,
problem solving and fluid reasoning assessments [42]. Alam and Leblanc have shown that multiple
choice scores can be optimized with E-learning sessions by combining mental practice with modeling [43]. Several combinations of enhancement are possible and the operation strategy must be studied in different situations.

Results
We have reproduced the effect of mental representation coupled with kinesiology and cognitive task analysis for the retention of procedural knowledge in a novice situation (medical student first year) [28]. Realizing more and more the associations of mental imagery and visuo-spatial abilities, we have started very recently to use BCI-MI development establishing a follow-up program with fMRI. Preliminary results should come soon. M.E. Whitcomb in Academic Medicine has recently discussed adequately the need for a major change in the philosophy of continuous education [7].

Summary
This reflective revolution in education should also include the development of artificial intelligence in a brain-machine interface. However, the application of brain-machine interface mandates a brain control over the machine. Robotics must not replace human brain but must enhance its possibilities. Integration and adaptation must prevail in any learning approach. On the other hand, neuroscience and cognition especially in inhibitory:excitatory (I:E) balance synapses [43] concerning neuroplasticity, should be better understood to optimize the strategy of Targeted Neuroplasticity Training (TNT). By achieving better understanding of cognition and metacognition with neuroimaging, we feel global knowledge will evolve on two fronts : 1- Precision in education with personalized cognition and 2- With combined utilization of neuroscience, artificial intelligence and metacognition evolution will reach for solving the recent asymptote curve of expertise but not without a strict necessity of neuroethics.

References

