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Abstract 
Lot streaming is a technique used to split the processing of lots into several sublots (transfer batches) to allow the overlapping 
of operations in a multistage manufacturing systems thereby shortening the production time (makespan). The objective of this 
paper is to minimize the makespan and total flow time of n-job, m-machine lot streaming problem in a flow shop with equal 
and variable size sublots and also to determine the optimal sublot size. In recent times researchers are concentrating and 
applying intelligent heuristics to solve flow shop problems with lot streaming. In this research, Firefly Algorithm (FA) and 
Artificial Immune System (AIS) algorithms are used to solve the problem. The results obtained by the proposed algorithms 
are also compared with the performance of other worked out traditional heuristics. The computational results shows that the 
identified algorithms are more efficient, effective and better than the algorithms already tested for this problem. 
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Nomenclature 
 

FA Firefly Algorithm 
AIS Artificial Immune System algorithm 
F1 completion time for first job 
F2 completion time for second job 
i machine 
j job 
m number of machines 
MP makespan 
n number of jobs 
nj number of sublots of job j 
Pij processing time for job j on machine i 
Tmax total flow time for generated sequence 

Pij processing time of job j on machine i 
Cij completion time of job j on machine i 
Tij total flow time of job j on machine i 
S  initial sequence 
S” generated sequence 
Sij setup time for job j on machine i 
TFT total flow time 
∆i idle time on the machine i 
Cmax(s) makespan for the sequence s 
Cmax(s’) makespan for the sequence s’ 
Lj number of sublot 
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1. Introduction 

This paper concentrates on solving the lot streaming 
problem in flow shop scheduling systems. The flow shop 
problem can be briefly described as follows: A set of jobs 
and a set of machines are given. Each job consists of a 
sequence of operations, which need to be processed 
during an uninterrupted time period of a given length on a 
given machine. A schedule is an allocation of the 
operations to time intervals on the machines. In a 
traditional flow shop, each job must be processed on 
every machine and all jobs must follow the same machine 
sequence (route). One of the common restrictions made in 
most research studies is that a job cannot be transferred to 
the next machine before its processing is finished. This 
need not be the case in many practical situations because 
a job may be split in to a number of smaller sub lots. 
When a sub lot of the job is completed, it can be 
immediately moved to the next machine. By splitting 
jobs, the idle time on successive machines can be 
reduced. The process of splitting jobs into sub lots is 
usually called “Lot Streaming” which was first introduced 
by Reiter1. So, Lot streaming represents the concept of 

dividing a lot into multiple smaller sublots, so that they 
can be transferred to the next stage immediately upon 
their completion. For the application of Firefly algorithm 
and Artificial Immune System algorithm, as a result of 
operation overlapping, idling time of machines, makespan 
and total flow time can be substantially reduced. 
Comparison of experimental results with other meta 
heuristics have clearly shown the competence of the FA 
and AIS algorithms in solving flow shop scheduling 
problems and the improvement in optimal solutions. 
 
The remainder of the paper is organized as follows: In the 
subsequent section, describes the literature review and 
section 3 explains the problem statement. Section 4 
addresses the determination of schedules applying Firefly 
algorithm. Section 5 addresses the determination of 
schedules applying Artificial Immune System algorithm. 
Section 6 provides the numerical illustration of the 
proposed algorithms. Section 7 provides a detailed 
analysis of computational results. Brief conclusions are 
summarized in section 8. 

2. Literature Review 

Many researchers have attempted on different directions 
to solve lot streaming problems using various techniques. 
But the usage of intelligent algorithms proved to be an 
effective tool for solving these types of problems. The 
details of some of the major research work carried out to 
solve lot streaming problems are discussed and presented 
in detail in this section. Some studies showed that lot 
streaming can significantly improve the schedule 
performance with respect to the makespan as reported by 
Baker and Pyke2.  Previous studies considering two-stage 
or special cases of three-stage flow shop lot streaming can 
be found in Potts and Baker3, Vickson and Alfredsson4, 
Glass et al.5, Chen and Steiner6, Sriskandarajah and 
Wagneur7.Chao- Tang Tseng and Ching- Jong 
Liao8attempted to solve flow shop scheduling problems 
based on weighted earliness and tardiness by proposing a 
new algorithm called “Discrete Particle Swarm 
Optimization algorithm (DPSO)”. Rahime Sancar Edis 
and M. Arslan Ornek9 considered consistent sublot types 

and discrete sublot sizes and presented the combination of 
simulation and tabu search with the objective of 
minimizing makespan. This work proved that heuristic 
algorithms provide efficient results compared to the 
deterministic models. Quan- Ke Pan et al.10 presented 
Shuffled Frog Leaping Algorithm (SFLA) for solving a 
lot-streaming flow shop scheduling problem with equal-
size sublots, where a criterion is to minimize  makespan 
under both an idling and no-idling production cases. 
Serdar Birogul et al.11 examined how the lot streaming 
affects both the Gantt scheme and the genetic algorithm, 
and how to adapt the Hybrid Genetic Algorithms (HGA) 
to job shop scheduling problems. An ant based algorithm 
for solving multi-level lot sizing problems based on the 
concept of MAX-MIN ant system was proposed and 
evaluated by Rapeepan Pitakaso et al.12.Marimuthu et 
al.13 proposed two meta heuristics, namely Simulated 
Annealing algorithm (SA) and Tabu Search algorithm 
(TS), to evolve the optimal sequence for makespan and 
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total flow time criteria in an m-machine flow shop with 
lot streaming. Marimuthu et al.14 addressed two more 
evolutionary algorithms namely, Genetic Algorithm (GA) 
and Hybrid Evolution Algorithm (HEA) to evolve best 
sequence for makespan/total flow time criterion for m-
machine flow shop involved with lot streaming and set-up 
time. Marimuthu et al.15 introduced Ant Colony 
Optimization algorithm (ACO) and Threshold Accepting 
algorithm (TA) to evolve best sequence for 
makespan/total flow time criterion for m-machine flow 
shop involved with lot streaming and setup time. Firefly 
Algorithms for Multi model Optimization was introduced 
by Xin -she Yang16 who was inspired by firefly 
behaviours. Mohammad Kazem Sayadi et al.17 proposed a 
new discrete firefly meta-heuristic to minimize the 
makespan for the permutation flow shop scheduling 
problem and compared with existing ant colony 
optimization technique. The results indicated that the new 
proposed technique performs better than the existing 
method. 
Liu, S.C.18 addressed a heuristic method for discrete lot 
streaming with variable sublots to determine a continuous 
solution (sublots with real values) for variable lot 
streaming and deriving a discrete solution by rounding up 
the continuous solution. Shu-Chu Liu et al.19 introduced 
the multi-product variable lot streaming (MPVLS) in a 
flow shop is to determine product sequence and to 
determine lot streaming for each machine, in order to 
minimize makespan. Fantahun M. Defersha and 
Mingyuan Chen20 developed a mathematical 
programming model and a hybrid genetic algorithm for n-
job m-machine lot streaming problems with variable 
sublots considering setup times. Biskup. D., 
Feldmann.M21 presented a mixed integer programming 
formulation to split a given lot into sublots so as to allow 

their overlapping production in a flow shop environment. 
Computational results confirmed that the exploitation of 
variable sublots were advantageous and may lead to a 
significant increase in productivity. Fantahun M. 
Defersha, Mingyuan Chen22 developed a hybrid genetic 
algorithm for one-job m-machine lot streaming problems 
with variable sublots and setup. Computational results 
showed that the performance of the proposed genetic 
algorithm was encouraging. 
Ranga V. Ramasesh et al.23 presented an economic 
production lot size model with lot streaming to minimize 
the total relevant cost. Subhash C. Sarin et al.24 presented 
a polynomial-time procedure for determining the number 
of sublots of a single-lot, multiple-machine flow shop lot-
streaming problem in order to minimize makespan, mean 
flow time, work-in-process where sub lot-attached setup 
and transfer times. Suk-Hun Yoon, Jose A. Ventura25 

presented linear programming formulations for 
minimizing the mean weighted absolute deviation from 
due dates for lot streaming under flow shop environment. 
Jiang Chen, George Steiner26 presented two quickly 
obtainable approximations of very good quality for the 
discrete lot streaming problem in flow shops. 
 
The literature review reveals that m- machine flow shop 
under lot sizing is one of the active areas of research. 
From the extensive literature survey carried out, it is 
identified that FA and AIS algorithms are not used to 
solve the lot streaming problems. It is observed that only 
few papers addressed that lot streaming in flow shops 
with variable sublots. This research gap is bridged by 
applying the FA and AIS algorithms for the flow shop lot 
streaming problem with equal and variable size sublots 
with the objective of minimizing the makespan and total 
flow time and to determine the optimal sublot size. 

3. Problem Statement 

The sequencing and scheduling problem considered in 
this paper is n job – m machine flow shop scheduling 
problem with equal and variable lot streaming. Statement 

of the problem, Illustrative example and mathematical 
formulation of the problem are described in this section. 
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3.1 Statement of the Problem (equal sublots) 

Figure 1 shows an example schedule of 2 jobs, each with 
3 equal sublots in the sequence 1-2 being processed 
through three machines. The first job completes its 
process at time F1 and the second job at time F2 in the 
schedule. The sum of F1 and F2 is the total flow time 

value of the schedule and the maximum of F1 or F2 thus 
becomes the makespan (MP) of the schedule. 
 
 
 
 

 

 

 

 

 

 
 
 
 

Fig 1-Scheduling 2 jobs through 3 machines with 3 equal size sublots in the sequence 1-2  
 
The problem of m-machine flow shop with equal lot 
streaming and setup time can be stated as: 
 Let Pij denote the processing time of the job j on machine 
i (1≤ i ≤ m, 1≤ j ≤ n). Also let Xjk (1≤ j ≤ n, 1≤ k ≤ nj) 
denote size of sublot k on machine i. Thus, the processing 
time of this sub lot is PijXjk. The sub lots are consistent if 
Xjk = xj,k+1 for 1≤ j≤ n, 1≤ k ≤ nj , Xjk and Xj,k+1 contain the 
same items; otherwise the sublots are variable. Let ∆i be 
the idle time on the machine i and nj be the number of 
sublots of job j. Determination of optimal makespan time 
and total flow time of a sequence of n- jobs available at 

time zero in a m- machine flow shop in which first sub lot 
of jth job is set on machine i on its arrival with the setup 
time of Sij and all the number of equal size sub lots nj of 
job j are processed continuously on machine i. 
Makespan (MP) for 3 machine 2 job problem (figure.1) is 
written as follows: 
 

MP = 


2

1
3

j
jS + 


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j
jj nP  + ∆3 ………. (1) 

3.2 Statement of the Problem (variable sublots) 

The problem considered in this section can be 
described as follows: there are n jobs and m machines in a 
flow shop. Each job j � J = {1,2,…n} will be 
sequentially processed on m machines and the job 
sequence is the same on each machine i � M = 

{1,2,…m}. In order to reduce the lead time and to 
accelerate the production, each job j can be split into 
number of sublots with variable size. Once the processing 
of a sublot on a machine is completed, it can be 
transferred to the downstream machine immediately. 
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Similarly, all the sublots of job j should be processed 
continuously. At any time, each machine can process at 
most one sublot and each sublot can be processed on at 
most one machine. Let the processing time of each sublot 
of job j on machine i be Pij, and the setting of first sublot 
of each job j on machine i consumes a time of Sij on its 
arrival to that machine. Given that the release time of all 
jobs is zero, and sublot transportation time is included in 
the processing time, then the objective is to find a 

sequence with the optimal sublot to minimize the 
makespan and total flow time. Let Cij be the completion 
time of job j in machine i , Tij be the total flow time of job 
j in machine i and ܣ௝(௜ାଵ)  be the arrival time of jth job on 
(i+1) machine. Let Z be the makespan objective function 
and Y be the total flow time objective function, the model 
is 
 

 
Minimize, 

ܼ ≥ ௜௝ܥ ,∀ ݅, ݆………. (2) 
ܻ ≥ ௜ܶ௝ ,∀ ݅, ݆………. (3) 

  Subject to 
௜௝ܣ + ௜ܵ௝ + ௜ܲ௝ ≥ ܼ,                    ∀ ݅, ݆ ………. (4) 
௜௝ܣ൫ߑ + ௜ܵ௝ + ௜ܲ௝൯ ≥ ܻ,             ∀ ݅, ݆ = ݉      ………. (5) 
௜௝ܣ + ௜ܵ௝ + ௜ܲ௝ ≥ ,݅ ∀          ,௝(௜ାଵ)ܣ ݆  ………. (6) 
௜ܵ௝ ≥ 0                                           ∀ ݅, ݆ ………. (7) 
௜ܲ௝ ≥ 0                                           ∀ ݅, ݆ ………. (8) 
௜௝ܥ ≥ 0                                           ∀ ݅, ݆ ………. (9) 
௜ܶ௝ ≥ 0                                             ∀ ݅, ݆ ………. (10) 

 
Equation (2) shows that makespan is greater than or equal 
to completion time of job j in machine i. Equation (3) 
shows that total flow time is greater than or equal to 
completion time of job j in machine i. Equation (4) 
calculates a schedule of jobs that minimizes makespan. 
Equation (5) determines a schedule of jobs that minimizes 
total flow time. Equation (6) computes arrival time of 
current job sequence to be processed is greater than 

completion time of previous job sequence. Equation (7) 
shows setup time of all job j on all machine i is greater 
than or equal to zero. Equation (8) shows processing time 
of all job j on all machine i is greater than or equal to 
zero. Equation (9) shows completion time of job j on 
machine i is greater than or equal to zero. Equation (10) 
shows total flow time of job j on machine i is greater than 
or equal to zero. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 -An example showing 5 sublots, two Jobs being processed through three machines 
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4. Firefly Algorithm 
 
4.1Introduction 
Firefly algorithm (FA) is an intelligent metaheuristic 
algorithm, inspired by the flashing behavior of fireflies. 
The Firefly Algorithm (FA) is a population-based 
technique to find the global optimal solution based on 
swarm intelligence, investigating the foraging behavior of 
fireflies. The flashing signal by fireflies is to attract 
mating partners and preys and share food with others 27. 
The swarm of fireflies will move to brighter and more 
attractive locations by the flashing light intensity that 
associated with the objective function of problem 
considered in order to obtain efficient optimal solutions. 
The development of firefly-inspired algorithm was based 
on three idealized rules28: i) artificial fireflies are unisex 
so that sex is not an issue for attraction; ii) attractiveness 
is proportional to their flashing brightness which 
decreases as the distance from the other firefly increases 
due to the fact that the air absorbs light. Since the most 
attractive firefly is the brightest one, to which it convinces 
neighbours moving toward. In case of no brighter one, it 
freely moves any direction; and iii) the brightness of the 
flashing light can be considered as objective function to 
be optimized. In this work, the evaluation on the 

goodness of schedules is measured by the makespan, 
which can be calculated using equation (11), where Ck is 
completed time of job k. 
Minimize: Cmax = max (C1, C2…Ck)  ………  (11) 
The distance between any two fireflies i and j at xi and xj, 
respectively, can be defined as a Cartesian distance (rij) 
using equation (12), where xi,k is the kth component of the 
spatial coordinate xi of the ith firefly and d is the number 
of dimensions16. 

rij = ║xi - xj║ = ට∑ ௜,௞ݔ) − ௝,௞ݔ
ௗ
௞ୀଵ )ଶ   (12) 

The calculation of attractiveness function of a firefly is 
shown in equation (13),  
β(r) =β0 × exp ( -γrm), with m ≥ 1   (13) 
The movement of a firefly i which is attracted by a more 
attractive (i.e., brighter) firefly j is given by the following 
equation (14),  

xi = xi+ β0 × exp (-γrij
2) × (xj – xi) + α (rand - ଵ

ଶ
)  (14) 

The settings of FA parameters: Light absorption 
coefficient (γ) = 1.0, Randomization parameter (α) = 0.3, 
Attractiveness value (β0) = 1.0 and rand= 0.2. 

4.2 General Schema of FA 
Objective function makespan, z = (C1, C2...Cn) 
Generate machines (i = 1, 2... m) 
Generate job sequences (j = 1, 2... n) 
Evaluate makespan (C1, C2, C3….Cn) for all population 
While Gen. < Max Gen. 

For each job sequence j = (1, 2, 3…, n)  
For each lot sizes (Xij)  

Move firefly in d-dimensional space 
Determine the attractiveness based on distance rij 

 Evaluate makespan 
End For 

 End For 
Assess light intensity 
Select job sequences and lot sizes for Gen. +1 

End While 
Rank and choose the best job sequences and sublot sizes 
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5. Artificial Immune System (AIS) algorithm  

5.1 Introduction 

Immune Algorithm (IA) or Artificial Immune System 
(AIS) is the recently developed evolutionary technique 
inspired by the theory or immunology or immune system. 
According to Castro and Zuben29 AIS is defined as ‘‘An 
abstract or metamorphic computational system using the 
ideas gleaned from the theory and components of 
immunology’’. AIS emulate the immune system in 
general and Clonal selection in particular. The artificial 
Immune system is built around the two principles of 
immune system. They are a) Clonal selection principle, b) 
Affinity maturation principle. 
In Clonal selection principle, each sequence (antibody) 
has a makespan (overall completion time) value which 
refers to the affinity of the antibody. Affinity value of 

each sequence is calculated from affinity function given 
as:  

Affinity (p) = ଵ
௠௔௞௘௦௣௔௡

 

So a lower makespan value gives higher affinity value. 
Further cloning in antibodies is done directly 
proportional to their affinity function values. So 
antibodies with lower makespan values will generate 
more clones. An affinity function is defined based on the 
makespan value of the sequence. 
The two methods employed in Affinity Maturation 
Principle are mutation and receptor editing. A two phased 
mutation procedure were used for the generated clones.  
a) Inverse mutation     b) Pair wise interchange mutation 

5.2 General Schema of AIS 

Objective function makespan, z = (C1, C2...Cn) 
Generate machines (i = 1, 2... m) 
Generate job sequences (j = 1, 2... n) 
Evaluate makespan (C1, C2, C3….Cn) for all population 
While Gen. ≤ Max Gen. 

For each job sequence j = (1, 2, 3…, n) 
For each lot sizes (Xij) 

If random number ≤ 0.8 
Recombine and inverse mutate the offspring 

End If 
If random number ≤ 0.4 

Perform pair wise mutation the offspring 
End If 

Evaluate makespan 
End For 

 End For 
Assess affinity function 
Select job sequences and lot sizes for Gen. +1 

End While 
Rank and choose the best job sequences and sublot sizes  
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6. Numerical Illustration 

The results of the algorithms for an example problem 
(5job–2machine) are given in this section. Table 1 & 2 

provides the data considered for equal and variable 
sublots in the example problem. 

 
Table 1 - Data of 5 job - 2 machine (equal sublots) 

Problem Data Jobs 
1 2 3 4 5 

nj 2 2 3 2 2 
S1j 2 3 4 2 3 
P1j 2 3 3 2 2 
S2j 2 3 2 3 4 
P2j 3 2 3 1 2 

 
Table 2 - Data of 5 Jobs – 2 Machines (variable sublots) 

Problem data Jobs 
1 2 3 4 5 

Number of jobs(nj) 10 8 12 9 6 
Number of sublot (Lj) 2 4 3 4 3 
Sublot size                                                        {64} {2132} {453} {2133} {231} 
S1j 2 3 2 3 2 
P1j 1 2 1 2 1 
S2j 2 3 2 2 3 
P2j 2 1 1 2 2 

6.1FA for makespan criterion 

Table 3 illustrates FA for equal sublots, how the reproduced sequences (new population) are evolved from the seed sequence 
(old population) and also the determination of makespan. 

Table 3 - FA Illustration (equal sublots) 

Seed 
Sequence 

Distance 
(rij) 

Attractiveness 
(βr) 

Movement 
(xi) 

Sequence 
for next 

generation 
makespan 

2 3 5 1 4 0.6 0.55 0.9986 2 3 5 1 4 48 
3 2 5 1 4 0.7 0.497 1.6388 3 2 5 1 4 48 
2 4 3 5 1 0.4 0.6703 0.4692 2 4 3 5 1 45 
1 5 2 3 4 1.2 0.3012 2.2943 1 2 5 3 4  45* 

 
The final job sequence is 1- 2 -5 -3- 4, the corresponding makespan time is 45 and it is shown in Figure 3. 
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Fig.3 - Schedule for the sequence 1-2-5-3-4 

Table 4 illustrates FA for variable size sublots, how the reproduced sequences (new population) are evolved from the seed 
sequence (old population) and also the determination of makespan with sublot size. 

 
Table 4 - FA Illustration (variable sublots) 

Seed 
Sequence 

Distance 
(rij) 

Attractiveness 
(βr) 

Movement 
(xi) 

Sequence 
for next 

generation 
makespan Sublot size 

5 4 2 3 1  1.2 0.3012 2.2943 5 3 1 2 4   85* {132}{543}{46}{3212}{1233} 
3 1 4 5 2   0.4 0.6703 1.2692 3 1 4 5 2  88 {453}{64}{2133}{231}{2132} 
4 5 1 3 2  0.2 0.8187 1.2178 4 5 1 3 2 89 {2133}{231}{64}{453}{2132} 
3 4 1 2 5  0.3 0.7408 0.8358 3 4 1 2 5 89 {453}{2133}{64}{2132}{231} 

The final result is 5-3-1-2-4, the corresponding makespan time is 85, Sublot Size is {132}{543}{46}{3212}{1233} and it is 
shown in figure 4. 

 

 

 

 

 

 

Fig.4 - Schedule for the Sequence 5-3-1-2-4 

 

Fig.4 - Schedule for the sequence 5-3-1-2-4 
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6.2 AIS for makespan criterion 

Table 5 illustrates AIS algorithms for equal sublots, how the reproduced sequences (new population) are evolved from the 
seed sequence (old population) and also the determination of makespan. 

Table 5 - AIS Illustration (equal sublots) 

Seed 
sequence 

makespan Affinity 
(1/z) 

mutation 

makespan Inverse mutation 
probability ≤ 0.8 

Inverse 
mutation 

Pair wise mutation 
probability ≤ 0.4 

Pair wise 
mutation 

RN Y/N RN Y/N 
3 2 1 4  5 48 0.0208 0.78 Y 2 3 1 5 4 0.3 Y 5 4 1 2 3   46* 
2 1 3 4 5 47 0.0213 0.9 N - 0.56 N 2 1 3 4 5 47 
 3 2 5 1 4 48 0.0208 0.6 Y 3 5 2 1 4 0.28 Y 2 1 3 5 4 46 
2 3  51 4 48 0.0208 0.58 Y 2 5 3 1 4 0.35 Y 3 1 2 5 4 46 

 
The final job sequence is 5- 4 -1 -2- 3, the corresponding makespan time is 46 and it is shown in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 - Schedule for the sequence 5-4-1-2-3 

Table 6 illustrates AIS algorithms for variable size sublots, how the reproduced sequences (new population) are evolved 
from the seed sequence (old population) and also the determination of makespan with sublot size. 

 
   Table 6 - AIS Illustration (variable sublots)   

Seed 
sequence 

makespan 
Affinity 

(1/z) 

mutation 

makespan Sublot size 
Inverse mutation 
probability ≤ 0.8 

Inverse 
mutation 

Pairwise mutation 
probability ≤ 0.4 

Pair wise 
mutation 

RN Y/N RN Y/N 
2 1 4 5 3 90 0.01111 0.6 Y 1 2 4 3 5 0.3 Y 3 5 1 2 4   87* {354}{213}{46}{3221}{1323} 
2 5 4 3 1 90 0.01111 0.48 Y 5 2 3 4 1 0.28 Y 3 4 5 2 1 88 {453}{2133}{231}{2132}{64} 
5 1 2 3 4 90 0.01111 0.5 Y 1 5 2 4 3 0.25 Y 1 4 3 5 2 88 {46}{1233}{345}{123}{1223} 
3 4 5 2 1 89 0.01123 0.9 N - 0.5 N 3 4 5 2 1 89 {453}{2133}{231}{2132}{64} 
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The final result is 3-5-1-2-4, the corresponding makespan time is 87, Sublot Size is {354}{213}{46}{3221}{1323} and it is 
shown in figure 6. 
 

 
 
 

 

 

 

 

 

 

Fig.6 - Schedule for the sequence 3-5-1-2-4 

7. Performance Analysis 

7.1 Test problem instances generation 

Different test problems of several job size and machine are generated with the prescribed bounds for equal and variable size 
sublots are presented in the Table 7. The results for FA and AIS are simulated with the help of a C++ program on a Core i3 
Processor system of 3.10GHz and 4 GB RAM. The processing time is much less than a minute. 
  

Table 7 – Upper and Lower bound for problem data generation 
Problem data Lower bound Upper bound 

nj 1 30 
Lj 1 9 
Sjk 1 9 
Pjk 1 9 

7.2 Discussions and Analysis 

AIS based on a genetic algorithm extended by a search 
technique to further improve individual’s fitness that may 
keep high population, diversity and reduce the likelihood 
premature convergence. Our objective is to determine the 
performance of FA in comparison with AIS; our 

experimental result shows that FA is superior to AIS. The 
second comparison was made upon the search space.  
From the extensive experiments, it was found that AIS 
can be seemed to provide almost minimum makespan and 
total Flow time is achieved in shorter time. Results 
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indicate that FA is extremely powerful technique and the 
most efficient algorithm for the n-job, m-machine lot 
streaming problem in a flow shop with equal and variable 
size sublots. 
The convergence speed of FA is greater than the AIS. 
AIS converge faster while FA searches the solution space 
with better accuracy. However both AIS and FA provide 
better solution than the already tested algorithms. AIS is 
very easy to implement and it requires very little 
parameter adjustments. The minimal makespan value is 

obtained with increase in number of generations for AIS. 
The result shows that FA produces clear and consistent 
superior results. With AIS, there is a good tradeoff 
between speed and avoidance of premature convergence. 
The solution is obtained with specific number of iteration 
in the proposed algorithms. AIS provide better solution 
with increase in the number of generations evaluated 
when compared with FA. The best optimal makespan 
value and total flow time value could be obtained by fine 
tuning the parameters. 

 

 

 

 

 

 

 

 
 
 

Fig.7–Convergence graph for 30×10 variable sublot sizes 
problem (makespan performance results) 

 
 

7.3 Performance evaluation of FA and AIS 
 
 

In this section, the computational results of proposed FA 
and AIS for equal size sublots (table 8- makespan 
criterion, table 9- total flow time criterion) are compared 
with the results of Particle Swarm Optimization (PSO) 
and Differential Evolution Algorithm (DEA) (Vijay 
Chakaravarthy et al.30 ). The computational results of 
proposed  FA and AIS for variable size sublots (table 10- 
makespan criterion, table 11- total flow time criterion) are 

compared with the results of Genetic Algorithm (GA) and 
Memetic Algorithm (MA) (Marimuthu et al.31 ). It is clear 
from the tables, that the proposed FA and AIS 
outperforms the other compared algorithms at the same 
computational time. We also find that FA provides higher 
quality results for makespan and total flow time, 
compared with AIS in given number of iterations.  
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Fig.8–Convergence graph for 30×10 variable sublot 
sizes problem (total flow time performance results) 
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Table 8 – Comparison between FA, AIS, DEA and PSO for equal size sublots (makespan)30 

m × n Problem Set 
makespan 

PSO DEA FA % Deviation 
from PSO 

% Deviation from 
DEA AIS % Deviation 

from PSO 
% Deviation from 

DEA 
3×10 1 796 796 796* 0 0 796* 0 0 

2 691 691 691* 0 0 691* 0 0 
3 625 625 625* 0 0 625* 0 0 
4 623 623 623* 0 0 623* 0 0 

          
5×20 1 854 851 843* 1.30 0.95 845 1.07 0.71 

2 749 748 745* 0.54 0.40 745* 0.54 0.40 
3 634 638 625* 1.44 2.08 625* 1.44 2.08 
4 677 677 677* 0 0 677* 0 0 

          
7×30 1 896 888 872* 2.75 1.83 881 1.70 0.79 

2 778 766* 765 1.70 0.13 769 1.17 0.39 
3 709 702 694* 2.16 1.15 698 1.58 0.57 
4 697 690 685* 1.75 0.73   685* 1.75 0.73 

*refers to minimum makespan 
 

Table 9 – Comparison between FA, AIS, DEA and PSO for equal size sublots (total flow time)30 

m × n Problem Set 
Total flow time 

PSO DEA FA % Deviation 
from PSO 

% Deviation 
from DEA AIS % Deviation 

from PSO 
% Deviation 
from DEA 

3×10 1 11135 11205 11283 1.33 0.70 10978* 1.43 2.07 
2 8994 8794 8603* 4.54 2.22 8785 2.38 0.10 
3 8644 8743 8520* 1.46 2.62 8552 1.08 2.23 
4 8555 8466 8374 2.16 1.10 8161* 4.83 3.74 

          
5×20 1 12871 12847 12628* 1.92 1.73 12831 0.31 0.12 

2 10527 10532 10232 2.88 2.93  10117* 4.05 4.10 
3 9759 9598* 9647 1.16 0.51 9636 1.28 0.40 
4 9836 9874 9718* 1.21 1.61 9770 0.68 1.06 

          
7×30 1 13767 13696 13530* 1.75 1.23 13538 1.69 1.17 

2 11253 11391  11300 0.42 0.81 10945* 2.81 4.07 
3 10757 10838 10748* 0.08 0.84 10801 0.41 0.34 
4 10682 10748 10412 2.59 3.23 10335* 3.36 3.99 

*refers to minimum total flow time 

 

Table 10 – Comparison between FA, AIS, GA and MA for variable size sublots (makespan)31 

m × n Problem Set 
makespan 

GA MA FA % Deviation 
from GA 

% Deviation 
from MA AIS % Deviation 

from GA 
% Deviation 

from MA 
3×10 1 786 779 776* 1.29 0.39 776* 1.29 0.39 

2 3496 3480 3472* 0.69 0.23 3475 0.60 0.14 
3 3511 3510 3498* 0.37 0.34 3498* 0.37 0.34 
4 3706 3706 3706* 0 0 3706* 0 0 

          
5×20 1 1399 1368 1357* 3.10 0.81 1357* 3.10 0.81 

2 7324 7288* 7322 0.03 0.47 7320 0.06 0.44 
3 7268 7075 7062* 2.92 0.18 7062* 2.92 0.18 
4 7359 7354 7350* 0.12 0.05 7355 0.05 0.01 

          
7×30 1 2028 2001 1998* 1.50 0.15 1998* 1.50 0.15 

2 10517 10194 10180 3.31 0.14 10178* 3.33 0.16 
3 10794 10702 10698* 0.90 0.04 10704 0.84 0.02 
4 10890 10764 10760* 1.21 0.04 10762 1.19 0.02 

*refers to minimum makespan 
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Table 11 – Comparison between FA, AIS, GA and MA for variable size sublots (total flow time)31 

m × n Problem 
Set 

Total flow time 

GA MA FA % Deviation 
from GA 

% Deviation 
from MA AIS % Deviation 

from GA 
% Deviation 

from MA 
3×10 1 4644 4036 4032* 15.18 0.10 4032* 15.18 0.10 

2 16318 16315 16315* 0.02 0 16315* 0.03 0 
3 17750 17750 17750* 0 0 17750* 0 0 
4 16960 16932 16930* 0.18 0.01 16930* 0.18 0.01 

          
5×20 1 13391 13045 13032* 2.75 0.10 13038 2.71 0.05 

2 74724 70585 70512* 5.97 0.10 70530 5.95 0.08 
3 74057 73935 73825* 0.31 0.15 73825* 0.31 0.15 
4 75384 74664 74600* 1.05 0.09 74650 0.98 0.02 

          
7×30 1 28625 28625 28625* 0 0 28625* 0 0 

2 165518 165508* 165708 0.11 0.12 165708 0.11 3.63 
3 168938 165983 165950* 1.80 0.02 166285 1.78 0.18 
4 168662 168662 168662* 0 0 168662* 0 0 

*refers to minimum total flow time 
 

8. Conclusion 

This paper has addressed the n-job, m-machine lot 
streaming problem in a flow shop with equal and variable 
size sub lots, where the objective is to minimize the 
makespan and total flow time. The two proposed 
heuristics FA and AIS, both suitable for providing 
solutions to any scheduling criterion. In order to verify 
the feasibility and the performance of the proposed 
algorithms, four different problem sets were tested. The 
success rate is defined by the ratio between the number of 
problems for which a particular method was the best 
solution and the total number of problems solved. 
Therefore, when two methods get the best solution for the 
same problem, their percentages of success are the same. 
Computational results summarized in tables clearly 
shows that the proposed FA and AIS outperform the 
other algorithms reported in the literature. The proposed 
algorithm sufficiently describes the processing dynamics 

of individual lots and enables the simultaneous 
determination of schedules on machines with equal and 
variable sublot sizes. FA and AIS optimize the makespan, 
as well as total flow time of jobs with the test problem 
instances generated using a random generation method. 
The comparison between them reveals that FA performs 
better than AIS in providing quality solutions with small 
increase in generations. This work can be extended by 
implementing other local search techniques and testing 
the features to solve combinatorial optimization 
problems, dynamic problems in real variables and other 
stochastic problems. The parameters of FA and AIS are 
tested with limited number of problem sets. It could be 
fine-tuned and related to problem size with more rigorous 
analysis so that computational effort could be minimized 
considerably. However, the closeness to optimality and 
consistency need to be established with further research. 
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