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Abstract

In the last five years, deep learning methods and particularly Convolutional Neural Networks (CNNs)
have exhibited excellent accuracies in many pattern classification problems. Most of the state-of-the-art
models apply data-augmentation techniques at the training stage. This paper provides a brief tutorial on
data preprocessing and shows its benefits by using the competitive MNIST handwritten digits classifica-
tion problem. We show and analyze the impact of different preprocessing techniques on the performance
of three CNNs, LeNet, Network3 and DropConnect, together with their ensembles. The analyzed trans-
formations are, centering, elastic deformation, translation, rotation and different combinations of them.
Our analysis demonstrates that data-preprocessing techniques, such as the combination of elastic defor-
mation and rotation, together with ensembles have a high potential to further improve the state-of-the-art
accuracy in MNIST classification.

Keywords: Classification, Deep learning, Convolutional Neural Networks (CNNs), preprocessing, hand-
written digits, data augmentation.

1. Introduction

The task of classification in automatic learning con-
sists of extracting knowledge from a set of labeled
examples in order to acquire the ability to predict
the correct label of any given instance 1. A fun-
damental aspect of a good classifier is its ability to
generalize on new data, i.e., correctly classify new
instances that do not belong to the training set.

In the last five years, deep learning in general and
Convolutional Neural Networks (CNNs) in particu-
lar have demonstrated a superior accuracy to all the

classical methods in pattern recognition, classifica-
tion and detection specially in the field of computer
vision. In fact, since 2012, the prestigious Large
Scale Visual Recognition Challenge (ILSVRC) has
been won only by CNNs 2. Two of the main reasons
behind this success is i) the emergence of new large
labeled databases such as, ImageNet (http://image-
net.org/), and also ii) the advances in GPU (Graph-
ics Processor Unit) technology, which have made
this device ideal for accelerating the convolution op-
erations involved in CNNs. CNNs are showing a
high potential for learning more and more complex
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patterns 2. They have been used with success in di-
verse problems, e.g., image classification 2,3, hand-
written digit recognition 4 and speech recognition
5,6, and they are being explored in more fields and
applications.

Data preprocessing 7 is an essential part of any
automatic learning process. In some cases, it focuses
on correcting the deficiencies that may damage the
learning process, such as omissions, noise and out-
liers 8. In other cases, it focuses on adapting the data
to simplify and optimize the training of the learning
model.

In contrast to the classical classification models,
the high abstraction capacity of CNNs allows them
to work on the original high dimensional space,
which reduces the need for manually preparing the
input. However, a suitable preprocessing is still im-
portant to improve the quality of the results 9.

One of the most used preprocessing techniques
with CNNs is data augmentation, which increases
the volume of the training dataset by applying sev-
eral transformations to the original input 2,4,10. Data
augmentation replicates the instances of the training
set by introducing various types of transformations,
e.g., translation, rotation, several types of symme-
tries, etc. Such techniques decrease the sensitivity
of the training to noise and overfitting.

MNIST is a handwritten digit database 11 that
contains 60,000 training instances and 10,000 test
instances. Each instance is a 28× 28 single chan-
nel grayscale image. MNIST has been written by
different persons to avoid correlations. The 70,000
images are distributed into 10 classes, one class per
digit, from 0 to 9. Each class has approximately the
same number of instances. The updated classifica-
tion results for MNIST can be found in 11,12.

This paper analyzes different preprocessing and
augmentation techniques for CNNs using as case
study the problem of handwritten digit classifica-
tion. We focus on analyzing combinations of these
transformations: centering, translation, rotation and
elastic deformation. The objective is to evaluate
to which extent these transformations affect the re-
sults of CNNs on the widely used MNIST dataset 11.
We consider the following well known networks,
LeNet 4, Network3 13 and DropConnect 14. The lat-

ter network represents the current state-of-the art for
MNIST classification.

This document is organized as follows: First,
section 2 presents the general features of deep learn-
ing for classification including a brief description of
CNNs, ensembles and deep learning software. Sec-
tion 3 describes the data preprocessing techniques
studied in this work together with the state-of-the-
art models in MNIST classification. Section 4 de-
scribes the CNNs we used for the problem of hand-
written digits recognition. Section 5 provides the ex-
perimental setup. Section 6 shows the experiments
we carried out for this work and the analysis of the
results. Finally, section 7 outlines the conclusions.

2. Deep learning for classification

This section provides an introduction to deep learn-
ing and CNNs and describes the CNNs used for
handwritten digits classification.

2.1. Brief introduction to deep learning and
CNNs

There exist several types of neural networks. In this
work we focus on feed-forward Convolutional Neu-
ral Networks for supervised classification, as they
provide very good accuracies for MNIST. A CNN
is formed by a set of layers of neurons, each neu-
ron is connected to the neurons of the previous layer
by a vector of weights, so that the value of a neuron
is computed as a weighted sum of the neurons from
the previous layer. Neurons can apply an activation
function to introduce non-linearity.

The classification mechanism works as follows:
it uses the instance that we intend to classify to set
the values of the first layer of the network (input
layer). Then, these values are propagated along the
multiple layers of the CNN until the final layer (out-
put layer), which outputs the predicted class. In gen-
eral, each layer extracts a certain level of abstrac-
tion.The first layers capture low-level features, e.g.,
edges, and the deeper layers capture high-level fea-
tures, e.g., shapes specific to one class. Therefore,
the larger the number of layers, the higher is the
learning capacity of more complex and generic pat-
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terns 15. There exist three different types of layers in
a CNN 4,15:

• Fully connected layers: each neuron is connected
by weights to all neurons of the previous layer.

• Convolutional layers: each neuron is connected to
a smaller area of neurons, called patch, in the pre-
vious layer. In this type of layers, the weights are
shared among all neurons of the same layer, which
reduces the search space of the learning process.

• Pooling layers: usually located after a convolu-
tional layer. Similarly to convolution layers, each
neuron is connected to an area of the previous
layer, and computes the maximum or average of
those values.

Fig. 1. Types of layers 16 that constitute LeNet CNN archi-
tecture.

In practice, CNNs include combinations of these
three types of layers. For illustration see the CNN
example shown in Figure 1. These networks are
adapted to extract knowledge from images and
structures that include some sort of spatial pattern,
as demonstrated by the results in diverse competi-
tions 2,17.

When a network is used to classify a problem
of m classes, c1, ...,cm, the output layer outputs
one neuron per class, i.e., a vector a = (a1, ...am).
We have used the SoftMax function to convert
these values into probabilities (equation 1), where
SoftMax(ai) is the probability that the input belongs
to class ci. Therefore, the CNN-model will intend to
output m− 1 neurons with values close to zero, ex-
cept for the correct class, which should be closed to
1.

SoftMax(ai) =
eai

m
∑
j=1

ea j

, i = 1, ...,m (1)

The training of a network involves optimizing the
weights of each neuron until the network acquires
the ability of predicting the correct label for each in-
put. The dimensions of the search space are as many
as the total number of weights. The reference algo-
rithm for training neural networks is the Gradient
Descent (GD) algorithm with back propagation 18.
GD computes the output of the network for all the
training examples, then, computes the output error
and its derivatives with respect to the weights to fi-
nally update the weights in the desired direction. GD
iterates over the whole training set multiple times
until convergence. The magnitude of the change of
the weights is called learning rate.

Training CNNs is computationally expensive
due to the large search space and complexity of the
training algorithm. Alternatively, Stochastic Gradi-
ent Descent (SGD) algorithm reduces these limita-
tion by using only a subset, called batch, of the train-
ing set in each iteration. Although the error func-
tion is not well minimized as in the case of GD. An
iteration over the entire training set, called epoch,
requires multiple iterations over the small batches.
This algorithm along with the recent advances in
GPUs and the availability of larger datasets have
allowed training deep CNNs successfully and with
very good results.

The SGD is often combined with complementary
operations to improve the convergence and general-
ization of the network:

• Momentum 19: the direction in which the weights
line is updated is a linear combination of the pre-
vious search direction and the one obtained with
the current batch. This avoids part of the bias in-
troduced by each batch to keep a steadier direction
throughout the search process.

• Adam (Adaptive Moment Estimation) 20: a
stochastic optimization technique that computes
individual adaptive learning rates for different pa-
rameters from estimates of first and second mo-
ments of the gradients.

• Dropout 21: for each training set, it randomly
omits a selected subset of feature detectors by
setting the layer’s output units to 0. Dropcon-
nect 14 is a generalization of dropout, it randomly
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sets a selected subset of weights (i.e., connec-
tions) instead of output vectors to 0. Both, dropout
and dropconnect are used for regularizing large
fully connected layers with the objective to reduce
overfitting.

• ReLU (Rectified Linear Units) 22: these units are
linear when their input is positive and zero other-
wise. ReLU makes training deep networks faster
than using standard sigmoid units. It also im-
proves the generalization of deep neural networks.

• Normalization: the sum of the weights (or their
squares) is added to the error function to improve
the robustness of the learning process.

2.2. CNNs and ensembles for handwritten digits
classification

Several previous works have shown that selecting
a complete set, i.e., ensemble, of the best perform-
ing networks and running them all with an appropri-
ate collective decision strategy increases the perfor-
mance 23,24. This is due to the fact that the computa-
tion of the weights is an optimization problem with
many local minima.

In this work we have analyzed the impact of the
preprocessing on both, single CNNs based-models
and ensembles of CNNs based-models.
Table 1. Topology of LeNet. Columns 2 and 3 show the con-
figuration for processing original and cropped input images re-
spectively.

Layer Filter size for Stride Activation
28x28-input 20x20-input

conv1 5×5×20 7×7×20 1/3 –
maxpool1 2×2 2×2 2 –
conv2 5×5×50 5×5×50 1 –
maxpool2 2×2 2×2 2 –
fc1 500 500 – ReLU
fc2 10 10 – SoftMax

Table 2. Topology of Network3 13. Columns 2 and 3 show the
configuration for processing original and cropped input images
respectively.

Layer Filter size for Stride Activation
28x28-input 20x20-input

conv1 5×5×20 3×3×20 1 relu
maxpool1 2×2 2×2 2 –
conv2 5×5×40 2×2×40 1 relu
maxpool2 2×2 2×2 2 –
fc1 640 640 – relu & dropout rate=0.5
fc2 1000 1000 – relu & dropout rat =0.5
fc3 10 10 – SoftMax

Table 3. Topology of DropConnect 14. Columns 2 and 3 show
the configuration for processing original and cropped input im-
ages respectively.

Layer Filter size for Stride Activation
28x28-input 20x20-input

conv1 5×5×32 7×7×32 1/3 –
maxpool1 2×2 2×2 2 –
conv2 5×5×64 5×5×64 1 –
maxpool2 2×2 2×2 2 –
fc1 150 150 – relu & drop-connect rate: 0.5
fc2 10 10 – softMax

As mentioned before, we have selected three
models with similar architectures, LeNet 4, Net-
work3 13 and DropConnect 14. The three models
have shown very good accuracies on handwritten
digit classification. LeNet, consists of two convo-
lutional layers (each one followed by max pooling)
and two fully connected layers (see Table 1). The
Cross Entropy is used as loss function and the out-
put layer outputs 10 neurons with SoftMax activa-
tion function.

Similarly, Network3, consists of two convolu-
tional layers (each one followed by max pooling)
and three fully connected layers (see Table 2) with
rectified linear units activation instead of sigmoid
one. The Cross Entropy is used as loss function and
the output layer outputs 10 neurons with SoftMax
activation function. Both architectures have been
trained using SGD algorithm.

DropConnect 14, is similar to the previous ones.
The main difference is that it uses dropconnect op-
timization in the first fully connected layer (see Ta-
ble 3).

2.3. Deep learning software

The high interest in deep learning, shown in indus-
try and Academia, has involved the development of a
large number of software to ease the creation, reuti-
lization and portability of deep learning codes. As
the field of deep learning is still evolving, there is
no standard library for building deep learning based
models. All the existent software are still under de-
velopment, i.e., they do not support all the optimiza-
tions, for example, dropconnet is not supported yet
by most libraries. The existent software can be clas-
sified in different ways, e.g., in terms of, target appli-
cations, used programming languages 25 and target
computing systems.
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For the problem analyzed in this work, we have
considered Caffe 26, Theano 27 and cuda-convnet 28.

Caffe (Convolution Architecture For Feature Ex-
traction) is a framework, with a user friendly in-
terface, that provides several examples and models,
e.g., Alexnet, googlenet and RNN, for training deep
learning models on well known datasets. One of
the interesting aspects in Caffe is that it allows fine-
tuning, which consists in taking an already learned
model, adapts the architecture and resume training
from the already learned model weights. It is coded
using C++ and CUDA and provides Command line,
Python and MATLAB interfaces. Caffe can be ac-
celerated using one or multiple GPUs.

Theano is a Python library for handling mathe-
matical expressions with multi-dimensional numer-
ical arrays. It does not provide pre-built models or
examples as in Caffe. Although we have used pure
Theano in this work, in general, it is not used di-
rectly for building deep learning models. Instead
Theano is used as backend for more specialized
and user friendly frameworks such as, Lasagne and
Keras. The training and testing on Theano can also
be accelerated using GPUs.

Cuda-convnet 28 is a deep learning framework
implemented with C++ and CUDA. It allows im-
plementing convolutional feed-forward neural net-
works and modeling arbitrary layer connectivity and
network depth. Currently, Cuda-convnet is the only
deep learning Software that supports dropconnect
operation. The training is done using the back-
propagation algorithm. Cuda-convnet can be accel-
erated using single and multiple GPUs. It is worth to
mention that Cuda-convnet is not maintained since
2014. None of the considered deep learning soft-
ware, i.e., Theano, Caffe and DropConnet, provide
support for ensembles.

The deep learning popularity results in numerous
open-source software tools. For readers with interest
in deep learning software tools, in 29 we can find an
interesting experimental analysis on CPU and GPU
platforms for some well known GPU-accelerated
tools, including: Caffe (developed by the Berke-
ley Vision and Learning Center), CNTK (developed
by Microsoft Research), Tensorflow (developed by
Google) and Torch.

3. Preprocessing handwritten digits

This section first explains the preprocessing tech-
niques used in this work and gives a description
of the top-5 most accurate networks for classifying
MNIST database.

3.1. Preprocessing and augmentation

We have applied the different preprocessing meth-
ods to increase the performance of CNN models.
The main purpose of these methods is making learn-
ing algorithms invariant to some transformations of
the images. Translations, rotations and elastic de-
formations methods have already been studied for
different purposes in the field of automatic learn-
ing 4,15,10. These methods apply a predefined trans-
formation to each image, obtaining new instances
for the training set. We also propose a centering
method, which does not need to increase the dataset
size in order to make learning algorithms invariant
to translations. We discuss each of these methods
separately.

• Translations: The image is translated a number of
pixels toward a given direction.

• Centering: This method is applied to the train-
ing and the test sets. First, the white rows and
columns are eliminated from the borders of each
image. This process may produce images of dif-
ferent sizes. Afterwards, the maximum number of
rows (rmax) and columns (rmax) of the cropped im-
ages are calculated. Finally, all the images are re-
sized by scaling them to the same size rmax×cmax.
This preprocessing approach removes parts of the
image that do not provide useful information,
making the learning process faster. Furthermore,
the resizing step normalizes the digits scale and,
hence, equal digits are more similar to each other.
When centering is combined with other transfor-
mations, the centering is applied at the end of the
preprocessing so that the final images will be cen-
tered. Note that translations and centering meth-
ods shouldn’t be applied together.

• Rotations: The image is rotated to a given angle
θ . The center of the rotation is the center of the
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image, denoted (a,b). The rotation is given by

Φθ

(
x
y

)
=

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)(
x−a
y−b

)
+

(
a
b

)
.

However, since we are dealing with maps of pix-
els rather then vectorial images, it is necessary to
apply interpolations when computing the rotation.
Concretely, for each pixel (i, j) in the resulting
image we compute the pixel’s value as the bilin-
ear interpolation of the original pixels surround-
ing Φ−θ (i, j). Note that interpolations increase
the variability of the resulting images.

• Elastic deformation: Image pixels are slightly
moved in random directions, keeping the image’s
topology. This transformation imitates the possi-
ble variability which takes place when one writes
the same digit twice. An elastic deformation is
obtained as follows: For each pixel (i, j) in the
resulting image we compute its location in the
original image, denoted (i′, j′). The original lo-
cation is determined by the displacement matrices
∆x and ∆y, (i′, j′) = (i+∆y(i, j), j+∆x(i, j)). Af-
terwards, the pixel value is obtained on applying
a bilinear interpolation. The remaining problem
is determining the displacement matrices. Algo-
rithm 1 gives a method to compute them. Initially,
the displacement matrices are initialized with ran-
dom values between −α and α using an uniform
distribution, where α is the deformation strength
in pixels. If we use these displacement matrices,
then the resulting image will be extremely differ-
ent from the original one. Thus, a convolution
with a gaussian kernel is applied , that is, each
component is recomputed as a weighted average
of all the matrix components, where the weights
are given by a two-dimensional Gaussian function

fσ (x,y) = exp
(
−x2 + y2

2σ 2

)
.

The standard deviation σ determines the weights.
If σ is small, then the rest of the components
have small weights and, hence, the transforma-
tion is mostly random. On the other hand, if σ
is large, then the weights are similar to each other
and, thus, the transformation is likely a transla-
tion. Consequently, values around σ = 6 are used
in the specialized literature 10.

Algorithm 1 Random Displacement Matrix
Require: The matrix dimension n, the displacement strength

α and the standard deviation σ .
1: ∆← n× n matrix with random components between −α

and α .
2: for i = 1,2, . . .n do
3: for j = 1,2, . . .n do
4: ∆(i, j) = ∑n

x,y=1 fσ (x−i,y− j)∆(x,y)
∑n

x,y=1 fσ (x−i,y− j)
5: end for
6: end for
7: return ∆

Fig. 2. Three original MNIST images (1st column) and the
obtained images after centering (2nd column), elastic defor-
mation (3rd column), translation (4th column) and rotation
(5th column).

Figure 2 shows three examples from MNIST, to-
gether with their respective centering transforma-
tions (2nd column), elastic deformation (3rd col-
umn), translation (4th column) and, rotation (5th
column). Figure 3 shows the average value of 10
original images from MNIST and the resulting im-
ages before and after applying the centering algo-
rithm.

Table 4. The combinations of transformations analyzed in this
study. All the combinations, from dataset 3 to 12, include the
original dataset.

Dataset Combination # of training
instances

1 Original 60,000
2 Centering 60,000
3 Elastic 300,000
4 Translation 300,000
5 Rotation 300,000
6 Elastic-centering 300,000
7 Rotation-centering 300,000
8 Translation-elastic 1,500,000
9 Translation-rotation 1,500,000
10 Rotation-elastic 1,500,000
11 Rotation-elastic-centering 1,500,000
12 Elastic-elastic 1,500,000
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Fig. 3. Average value of 10 images from MNIST, one image per class, before and after applying the centering process.

The transformations described in this section,
i.e., rotation, translation, elastic deformation and
centering, can be combined together to further in-
crease the volume and variability of the dataset used
for training the network. Table 4 shows the set of
preprocessing combinations analyzed in this work,
along with the number of instances that form each
training set. Note that the datasets of the combina-
tions from 3 to 12 include also the original images
without transformations.

3.2. MNIST classification: Using data
augmentation to get the state-of-the-art
results

Although the focus of this paper is to analyze the im-
pact of the pre-processing on CNNs based models,
this section provides an overview of the most accu-
rate models for MNIST classification. Notice that
the three most accurate models for MNIST classifi-
cation use data-augmentation.

The ranking of the 50 most accurate models for
classifying handwritten digits can be found in 12.
Each model attempts to minimize the test error by
introducing new optimizations. As summarized in
Table 5, the top-5 models are:

• The fifth most accurate model 30 obtains a test er-
ror, 0.29%, without data augmentation by replac-
ing the typical, max or average, pooling layer with
a gated max-average pooling.

• Maxout network In Network (MIN) model 31

reaches a test accuracy, 0.24%, without data aug-
mentation by applying a batch normalization to
the maxout units of the model.

• APAC-based Neural Networks 32 obtains a test er-
ror, 0.23% , by 1) introducing a new decision rule
for augmented dataset, which basically consists in
calculating the mean of logarithm of the softmax

output and, 2) preprocessing the training set using
elastic distortions.

• The multi-column deep neural networks model
33 provides a test accuracy similar to the previ-
ous one, 0.23%, by calculating the final predic-
tion of each test as the average of the predictions
of the deep learning model trained on input pre-
processed in different ways, translated, scaled, ro-
tated and elastically distorted.

• DropConnect network 14 obtains the state-of-the-
art test error, 0.21%, by 1) applying dropout op-
timization to the weights instead of the activation
units, 2) preprocessing the training dataset (crop,
rotate and scale the images then subtract the im-
age mean), 3) training the network using the 700-
200-100 epoch schedule as follows: Using three
training stages, 700 epochs, 200 epochs and 100
epochs, and different multipliers for each stage.
Multiplying the initial learning rate by 1 in the
first stage. Multiplying the rate by 0.5 and train
the net 200 epochs and again multiply the rate
by 0.1 and retrain during 200 epochs. Multiply-
ing the rate by 0.05, 0.01, 0.005 and 0.001 and
train 100 epochs successively 4) using an ensem-
ble of 5 networks trained on different sequences
of random permutations of the training set using
the most voted strategy.

Table 5. Test errors (in %) reported by the five most accurate
models for MNIST classification.

Model Test published
error in

DropConnet 14 0.21% ICML 2013
Multi-column deep neural networks 33 0.23% CVPR 2012
APAC Neural Networks 32 0.23% arXiv 2015
MIN(Maxout network In Network) 31 0.24% arXiv 2015
CNNs with generalized pooling 0.29% AISTATS 2016
functions 30
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4. Experimental analysis

This section presents and analyzes the impact of the
preprocessing techniques, described in section 3.1,
on the performance, in terms of accuracy, which is
the most used metric in MNIST problem, and exe-
cution time, of LeNet, Network3 and DropConnect.
We will also analyze the impact of the preprocessing
on several ensembles combined with different deci-
sion strategies and on Net configurations.

4.1. Experimental setup

The three considered convolutional networks,
LeNet, Network3 and DropConnect are imple-
mented respectively in Caffe 26, Theano 27 and
Cuda-convnet2 28. Table 6 shows the parameters
used for the data preprocessing and for the training.

Table 6. Parameters of the used learning models and pre-
processing algorithms

Algorithm Parameter Value
Number of iterations 10,000 / 50,000
Batch size 64 / 256
Learning rate lr0(1+ γ ∗ iter)−b

Initial learning rate (lr0) 0.01
LeNet (SGD) γ 0.0001

b 0.75
Momentum 0.9
Regularization Coefficient L2 0.0005
Number of epochs 10 / 20
minibatch size 10
Learning rate 0.03

Network3 (SGD) γ 0.0001
Number of epochs 100 / 200
minibatch size 128

DropConnect (SGD) Learning rate 0.01
Momentum 0.9

Elastic transformation Typical deviation 6
Number of transformations 4
Strength 4

Translation Magnitude ±3 pixels
Direction Vertical y horizontal

Rotation Angles ±8 y ±16 degrees
Centering Final size 20×20 pixels

4.2. Preprocessing analysis

This section presents and analyzes the impact of all
the considered preprocessing technique on the ac-
curacy of LeNet, Network3 and DropConnect. The
average and best test accuracies shown in this sec-
tion are measured as follows. For each training set,
the average accuracy is calculated as the average of
the final accuracies obtained over 5 executions of the

considered learning model. The best accuracy is the
highest final accuracy over the 5 executions.

4.2.1. LeNet

Table 7 shows the results of LeNet on the twelve
considered preprocessed training sets using 10,000
and 50,000 iterations. The results are expressed in
terms of, average and best test accuracies. The high-
est accuracy in each column is highlighted in bold
and the best top five accuracies are labeled as 1, 2, 3,
4 and 5. Recall that in Caffe, Epoch is calculated as

E poch =
max iter×# batch size

#of images in training set

In general, except for the case of centered
set, training LeNet on a pre-processed training
set always leads to better accuracies than train-
ing it on the non-preprocessed one, i.e., the orig-
inal set. In addition, the convergence of LeNet
is always faster on the pre-processed sets. The
five most accurate result using 10,000 iterations are
obtained in order by, the rotation-elastic, elastic-
elastic, rotation-elastic-centered, translation-elastic
and elastic-centered sets. The five most accurate
result using 50,000 iterations are obtained in or-
der by, the rotation-elastic, rotation-elastic-centered,
translation-rotation, elastic-elastic and translation-
elastic sets. The best accuracy, 99.47%, is obtained
by the rotation-elastic pre-processing using 50,000
iterations. A remarkable result is that the best accu-
racy for 10,000 iterations is obtained with only 0.43
epochs, which means that only 43% of the dataset
instances has been used for the training, where each
instance has been used only once.

4.2.2. Network3

Table 8 shows the average and best test accuracies
of Network3 on the twelve considered preprocessed
datasets using 10 and 50 epochs. The five most ac-
curate results for 10 epochs are obtained in order
by, the elastic-elastic, rotation-elastic, translation-
rotation, translation-elastic and translation sets. The
five most accurate results for 20 epochs are obtained
in order by, elastic-elastic, rotation-elastic, elastic,
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Table 7. Average and best test accuracies obtained by LeNet on each one of the preprocessed datasets using 10,000 and 50,000
iterations. Time (columns 5 and 9) is the time taken to execute the training-testing process on each dataset. The top five accurate
models are labeled as 1, 2, 3, 4 and 5.

LeNet (10,000 iter.) LeNet (50,000 iter.)
Dataset Average Best Epochs Time(s) Average Best Epochs Time(s)
Original 99.08% 99.18% 10.67 267.91 99.05% 99.21% 213.33 1070.29
Centered 98.85% 99.06% 10.67 203.52 98.95 % 98.09% 213.33 926.38
Elastic 99.09% 99.19% 2.13 232.75 99.36% 99.44% 42.67 1065.38
Translation 99.09% 99.32% 2.13 268.75 99.30% 99.41% 42.67 1065.38
Rotation 99.05% 99.10% 2.13 268.03 99.25% 99.37% 42.67 1065.38
Elastic-centered 599.17% 99.26% 2.13 267.20 99.27% 99.36% 42.67 925.51
Rotation-centered 98.90% 99.07% 2.13 232.73 99.19% 99.33% 42.67 950.38
Translation-elastic 499.18% 99.32% 0.43 267.43 599.39% 99.54% 8.53 1050.38
Translation-rotation 99.16% 99.40% 0.43 267.41 399.40% 97.55% 8.53 1045.38
Rotation-elastic 199.31% 99.39% 0.43 268.14 199.47% 99.57% 8.53 1046.25
Rotation-elastic-centered 399.19% 99.24% 0.43 232.30 299.43% 99.52% 8.53 925.68
Elastic-elastic 299.27% 99.45% 0.43 268.10 499.40% 99.50% 8.53 1047.64

Table 8. Average and best test accuracies obtained by Network3 on the twelve datasets using 10 and 20 epochs. Time (columns 5
and 9) is the time taken to train Network3 on each dataset. The top five accurate models are labeled as 1, 2, 3, 4 and 5.

Network3(10 epochs) Network3(20 epochs)
Dataset Average Best Time(s) Average Best Time(s)
Original 99.01% 99.07% 124.45 99.25% 99.25% 205,21
Centered 98.73% 98.80% 118.32 98.97% 99.01% 196.92
Elastic 99.49% 99.54% 656,85 399.61% 99.67% 1200,33
Translation 599.49% 99.55% 631.53 499.59% 99.63% 1228,71
Rotation 99.44% 99.50% 636.25 99.44% 99.50% 1256,95
Elastic-centered 99.32% 99.39% 566.44 99.57% 99.60% 1109,43
Rotation-centered 98.88% 98.94% 569.04 99.31% 99.32% 1167,32
Translation-elastic 499.54% 99.57% 3647.78 599.58% 99.63% 7111,65
Translation-rotation 399.57% 99.61% 3650.66 99.58% 99.60% 7149,25
Rotation-elastic 299.62% 99.67% 3642,85 299.67% 99.69% 6996,23
Rotation-elastic-centered 99.43% 99.51% 3054,43 99.51% 99.52% 6908,70
Elastic-elastic 199.65% 99.66% 3607.32 199.67 % 99.70% 7189,16
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Table 9. Average and best test accuracies obtained by DropConnect on the twelve datasets using 100 and 200 epochs. Time
(columns 5 and 9) is the time taken to execute the training-testing process on each dataset. The top five accurate models are labeled
as 1, 2, 3, 4 and 5.

DropConnet(100 epochs) DropConnet(200 epochs)
Dataset Average Best Time(s) Average Best Time(s)
Original 98,32% 98,83% 7803.43 98.98% 98,99% 18748.53
Centered 95.35% 94,46% 6659.31 95.13% 98,85% 18635.54
Elastic 99.33 % 99,35% 7512.25 99.36% 99,36% 18606.15
Translation 599.43% 99,46% 7736.41 599.47% 99,47% 18710.45
Rotation 99.18% 99,29% 7151.73 99.37% 99,47% 18729.29
Elastic-centered 96.58% 96,69% 6969.89 97.08% 97,09% 18661.80
Rotation-centered 98.30% 98,41% 6974.23 98.55% 98,63% 18668.05
Translation-elastic 99.40% 99,57% 7162.37 399.58% 99,58% 18745.93
Translation-rotation 299.57% 99,59% 7410.32 199.69% 99,69% 18772.40
Rotation-elastic 399.54% 99,60% 7397.40 499.56% 99,56% 18724.38
Rotation-elastic-centered 499.47% 99,49% 7803.73 99,44% 99,46% 18220.50
Elastic-elastic 199,58% 99,59% 7911.30 299,59% 99,61% 18712.22

translation and translation-elastic sets. The best ac-
curacy, 99.67%, is obtained by the elastic-elastic
pre-processing method using 20 epochs. Similarly
to LeNet, except for the case of centered set, train-
ing Network3 on a pre-processed training set always
leads to better accuracies than training it on the orig-
inal training set. In addition, the convergence of Net-
work3 is always faster on the pre-processed sets.

4.2.3. DropConnect

As our focus is not improving the state-of-the-art
error, we have analyzed the accuracy of DropCon-
nect network using shorter training periods, 10 and
20 epochs. Recall that to reach the current state-
of-the-art error, 0.21%, reported in 14, the authors
employed the 700-200-100 cascade schedule.

Table 9 shows the results of DropConnect
on the considered preprocessed datasets using 10
and 20 epochs. The five most accurate re-
sults for 10 epochs are obtained in order by the
elastic-elastic, translation-rotation, rotation-elastic,
translation-elastic-centered and translation sets. The
five most accurate results for 20 epochs are ob-
tained in order by, the translation-rotation, elastic-
elastic, translation-elastic, rotation-elastic and trans-

lation sets. The best accuracy, 99.69%, is ob-
tained by the translation-rotation training set using
20 epochs. As it can be seen from Tables 7, 8 and 9
the best performance of each network is obtained by
a different pre-processing techniques. DropConnet
provides the highest accuracy over the three evalu-
ated networks.

4.2.4. Different configurations of LeNet fully
Connected layer

This subsection illustrates the impact of dropout
operation on the performance of LeNet. Table 10

Table 10. Test accuracies of LeNet with 500, 1000 and 1000
with dropout.

1000 neurons
Dataset 500 neurons 1000 neurons + dropout
Original 99,05% 99,05% 99,24%
Centered 98,95% 98,98% 99,16%
Elastic 99,36% 99,35% 99,46%
Translation 99,30% 99,29% 99,45%
Rotation 99,25% 99,26% 99,37%
Elastic-centered 99,27% 99,33% 99,41%
Rotation-centered 99,19% 99,15% 99,37%
Translation-elastic 99,39 % 99,39% 99,49%
Translation-rotation 99,40% 99,40% 99,49%
Rotation-elastic 99,47% 99,50% 99,55%
Rotation-elastic-centered 99,43% 99,48% 99,48%
Elastic-elastic 99,40% 99,50% 99,53%
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shows the accuracies obtained by different configu-
rations of the 1st Fully Connected Layer of LeNet,
500 neurons (the configuration used for the ex-
periments shown in Table 7), 1000 neurons and,
1000 neurons combined with dropout. In general,
the configuration with 1000 neurons combined with
dropout provides the best accuracies over the first
two configurations for all the preprocessing datasets.

4.2.5. Ensembles

This section analyzes the impact of the preprocess-
ing on different ensembles, different configurations
and different training durations. We will first ana-
lyze the effect of different configurations and deci-
sion criteria on Lenet-based ensembles then we will
show the performance of ensembles of Lenet, Net-
work3 and DropConnect using the most voted deci-
sion strategy, which is the strategy used for MNIST
classification in 14.

Table 11 shows the accuracies obtained by two
ensembles made up of the five and three best mod-
els, ensemble-5 and ensemble-3, based on LeNet,
with different 1st fully connected layer configura-
tions, and using different decision strategies, the
most voted strategy (MV), the maximum of prob-
ability summation (MPS) and the maximum prob-
ability (MP). In general, ensemble-5 and -3 provide
better accuracies over all individual models from Ta-
ble 7. The best accuracy, 99,68%, is obtained by the
configuration 1000 neurons with dropout using the
maximum of probability summation strategy.

Network3 and DropConnect codes do not pro-
vide the weights associated to each class. There-
fore, for the next results we have employed only the
most voted decision strategy. Table 12 shows the
test accuracies obtained by two ensembles made up
of the five and three best models, for the three con-
sidered networks, LeNet, Network3 and DropCon-
nect, using the most voted decision strategy. LeNet
based ensembles use 10,000 and 50,000 iterations,
Netwok3 based ensembles employ 10 and 20 epochs
and DropConnect based ensembles use 100 and 200
epochs.

• LeNet based ensemble-5 reaches the best accu-
racy, 99.57%, in 50,000 iterations.

• Network3 based ensemble-5 reaches the best ac-
curacy, 99.72%, in 10 epochs.

• DropConnect based-ensemble-5 reaches also
99,72% in 100 epochs.

As it can be observed, ensemble-5 and ensemble-
3 show higher accuracies than all the individual
models from Tables 7, 8 and 9.

(2)    1 (5)    3 * (1)    7 (8)    9 (6)    5 (9)    4 (7)    1

(5)    3 (9)    4 * (9)    8 (4)    9 * (5)    3 * (5)    3 * (6)    1 *

(7)    9 (6)    0 * (2)    7 * (1)    7 (2)    7 (6)    1 (3)    5

(9)    4 * (5)    3 * (3)    8 (7)    1 (8)    5 * (4)    9 (5)    6 *

Fig. 4. The 28 handwritten digits misclassified by
ensemble-5 of Network3 trained during 10 epochs. The
digit between () represents the correct class. The 13 digits
labeled with asterisks are also misclassified by DropCon-
nect based ensemble-5.

(6)    0 (2)    7 (5)    3 * (1)    7 * (9)    5 (9)    7 (8)    3

(9)    4 * (1)    2 (5)    3 * (5)    6 (4)    9 * (2)    0 (5)    3 *

(6)    1 * (4)    9 (6)    0 * (5)    0 (6)    8 (7)    8 (2)    7 *

(9)    5 (9)    8 * (7)    2 (5)    3 * (1)    7 (8)    5 * (5)    6 *

Fig. 5. The 28 handwritten digits misclassified by
ensemble-5 of DropConnect trained during 10 epochs. The
digit between () represents the correct class. The 13 digits
labeled with asterisks are also misclassified by Networks
based ensemble-5.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 555–568
___________________________________________________________________________________________________________

565



Table 11. Test accuracies obtained by ensemble-5 and ensemble-3, using three configurations of the 1st fully connected layer of
Lenet, based on three decision strategies, the most voted strategy (MV), the maximum of probability summation (MPS) and the
maximum probability (MP).

LeNet
500 neurons 1000 neurons 1000 neurons with dropout

MV PSM MP MV PSM MP MV PSM MP
Ensemble-5 99,57% 99,56% 99,59% 99,60% 99,62% 99,63% 99,61% 99,64% 99,63%
Ensemble-3 99,54% 99,58% 99,62% 99,61% 99,66% 99,64% 99,65% 99,68% 99,64%

Table 12. Test accuracy of ensemble-5 and ensemble-3 of LeNet, Network3 and DropConnect, for two training periods and using
the most voted strategy.

LeNet(500 neurons) Network3 DropConnect
10,000 iter 50,000 iter 10 epochs 20 epochs 100 epochs 200 epochs

Ensemble-5 99,55% 99,57% 99,72% 99,69% 99,72% 99,66%
Ensemble-3 99,43% 99,54% 99,69% 99,67% 99,69% 99,68%

The 28 misclassified digits by the most accurate
Network3-ensemble-5 and DropConnect-ensemble-
5 are shown respectively in Figure 4.2.5 and 4.2.5.
As it can be observed from these Figures, the mis-
classified examples are hard to be correctly clas-
sified by humans. Moreover, although the two
ensembles provide the same accuracy, 99,72%,
they classify different difficult instances with dif-
ferent results, i.e., only 13 common instances be-
long to the two misclassified sets. This interest-
ing result demonstrates the high potential of data-
preprocessing to improve the current top-1 accuracy.

4.3. Execution time

All the experiments have been carried out on an
Intel(R) Core(TM) i7-3770K CPU connected to
Nvidia GeForce GTX TITAN GPU (see its charac-
teristics in Table 13). The bandwidth between host
and device, measured using Nvidia bandwidthT-
est benchrmak, is 6641.1 MB/s. For the experi-
ments in Theano we have used optimization flags
THEANO FLAGS=’floatX=float32,device=gpu0,
lib.cnmem=1,optimizer including=cudnn’.

Table 13. Characteristics of the GPU used in the experiments.

Global memory 6 GB
# of multiprocessors 14
# of cores/multiprocessor 192
CUDA version 7.5

We have also reported the execution time of
the most computationally expensive process in deep
learning, which is the training phase, in columns 5
and 9 in Table 7 and columns 4 and 7 in Tables 8
and 9. As we can observe, the execution time of
LeNet and DropConnet is not affected by the size
of the training datasets. That is, training LeNet and
DropConnect on the transformed datasets take the
same duration as training them on the original set.
This is because they analyze the same number of
examples independently on the size of the training
set. However, the execution time of Network3 is
higher on larger datasets. This is due to the differ-
ences in how the stop criteria are implemented in
each code/library, e.g., Caffe stop criteria is based
on the number of iterations.

5. Conclusions

We have presented a short description of image pre-
processing for deep learning algorithms in general
and CNNs in particular. We have analyzed the im-
pact of different preprocessing techniques, configu-
rations and ensembles on the performance of three
networks, LeNet, Network3 and DropConnect. The
latter represents the current state-of-the art. We
used the problem of handwritten digits recognition
as case of study and evaluated individual and com-
binations of the considered preprocessing methods
on the MNIST dataset.
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Our results demonstrate that the combination of
elastic and rotation improves the accuracy of the
three analyzed networks up to 0.71%. Ensembles
together with preprocessing improve the accuracy,
with respect to the original non-preprocessed mod-
els, up to 0.74%. A remarkable result is that differ-
ent high performing ensembles misclassify different
examples, which evidences that there is still room
for further improvement. As future work, we will
focus on improving the state-of-the art accuracy in
MNIST classification.
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