A Simulation Research on Single Phase Bridge Full Control Resistive Load Rectifying Circuit Based on MATLAB

Han-hong Tan¹, Xiang Zhao ²
1. Guangdong University of Science & Technology, Dongguan, Guangdong, 523083; 2. Guilin University of Electronic Technology, Guilin, Guangxi, 541004

Keywords: Single Phrase Full Control Bridge; Resistive Load; Rectifying Circuit; Simulation Model Diagram

Abstract. The controlled rectifier circuit simulation study has been conducted in this paper with the MATLAB7.0 Simulink power system simulation model, the paper provides analysis waveform of a single phrase full control bridge resistive load circuit, provides the circuit’s MATLAB simulation model diagram and the simulation waveform, and in this paper simulation waveforms and theory analysis waveforms were analyzed and compared. The results of simulation show that the model is correct. It is proved that the proposed model is convenient, flexible, convenient, intuitive, thus it provides an effective and auxiliary tool for the teaching of power electronics and experiments.

Introduction

Rectifier circuit, especially single phase bridge controlled rectifier circuit, is the most important circuit in power electronics technology, and it is also the most widely applicable circuit, the circuit is not only used in the general industry, but it is widely used in other fields, including transportation, power system, communication system, energy system etc. It has practical significance to do comparative study on single phase bridge controlled rectifier circuit parameters, because it is not only a critical link in power electronic circuits theory learning, but has the predicting and guiding effect in the actual application of engineering practice. [1][2] The visual simulation tool provided Matlab, Simulink, can establish the circuit simulation model directly, and it can change the parameters of the simulation at will, and the simulation result could be got immediately, and it has the feature of strong visuality, further eliminating the steps of programming. [3-5]. As a new kind of high performance language, Matlab provides an ideal tool for the research and application of power electronic technology.

Theoretical Analysis

The single phrase full control bridge resistive load circuit principle diagram is shown in Figure 1:

![Figure1 The single phrase full control bridge resistive load circuit principle diagram](image)

VT1 and VT4 constitute a pair of bridge arm, and it withstands voltage U2 in the U2 positive half cycle, and when there has the trigger pulse, it turns on, when there has the zero crossing U2, it turns off.

VT2 and VT3 constitute another pair of bridge arm, and it withstands voltage -u2 in the U2
positive half cycle, and when there has the trigger pulse, it turns on, when there has the zero crossing U2, it turns off.

From the above theoretical analysis, the theoretical analysis waveform of the single phrase full control bridge resistive load circuit is shown in Figure 2. u_d is the load R voltage and i_d is the load current. $u_{VT1,4}$ is the voltage of thyristor VT1 and VT4, i_2 is the current flowing through the transformer T.

![Theoretical analysis waveform of the single phase full control bridge resistive load circuit](image)

The theoretical analysis shows that the average value of the output DC voltage u_d is:

$$U_d = \frac{1}{\pi} \int_0^\pi \sqrt{2} U_2 \sin \omega t d(\omega t) = \frac{2\sqrt{2} U_2}{\pi} \frac{1 + \cos \alpha}{2}$$

$$= 0.9 U_2 \frac{1 + \cos \alpha}{2}$$

The average value of the output DC current I_d is:

$$I_d = \frac{U_d}{R} = \frac{2\sqrt{2} U_2}{\pi R} \frac{1 + \cos \alpha}{2} = 0.9 \frac{U_2}{R} \frac{1 + \cos \alpha}{2}$$

MATLAB Simulation Model

The simulation model of single phase full wave rectifier circuit with resistive load of Simulink simulation module based on MATKAB7.0 is shown in Figure 3.

![MATLAB Simulation Model](image)

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_2</td>
<td>100V</td>
</tr>
<tr>
<td>α</td>
<td>60°</td>
</tr>
<tr>
<td>R</td>
<td>10Ω</td>
</tr>
</tbody>
</table>

The parameter setting of Module T in the simulation model is shown in the Figure 4.
<table>
<thead>
<tr>
<th>Module Name</th>
<th>Extraction Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse1、Pulse2</td>
<td>Simulink\Source\Pulse Generator</td>
</tr>
<tr>
<td>T</td>
<td>SimPowerSystems\Elements\Linear Transformer</td>
</tr>
<tr>
<td>AC 380V</td>
<td>SimPowerSystems\Electrical Sources\AC Voltage Source</td>
</tr>
<tr>
<td>Th1、Th2、Th3、Th4</td>
<td>SimPowerSystems\Estra Library\Power Electronics\Thyristor</td>
</tr>
<tr>
<td>U1、Ud、UVT1</td>
<td>SimPowerSystems\Measurements\Voltage Measurement</td>
</tr>
<tr>
<td>iT1、iT2、id、i2</td>
<td>SimPowerSystems\Measurements\Current Measurement</td>
</tr>
<tr>
<td>R</td>
<td>SimPowerSystems\Elements\Parallel RLC Branch</td>
</tr>
<tr>
<td>Scope</td>
<td>Simulink\Commonly Used Blocks\Scope</td>
</tr>
</tbody>
</table>

Figure 4. The parameter setting of Module T

Simulation Data and Wave Form

In the MATLAB command window, when entering the following command, the output voltage of the rectifier circuit can be calculated.

```matlab
>> syms U2 Ud alpha omega t;
>> T=1/50;omega=100*pi;
>> u=sqrt(2)*U2*sin(omega*t);
>> Ud=1/(pi/omega)*int(u,t,alpha/omega,pi/omega);
>> Ud1=vpa(Ud,4)
```

The command operation result is,

\[
U_{d1} = 0.4500U_{2}(1+\cos(\alpha))
\]

The above analysis shows that the result of MATKAB command operation is consistent with the theoretical analysis.

According to the formula \(t = \frac{\alpha T}{360^\circ} \), the grid alternating current is \(T=0.02s \). When the thyristor control angle \(\alpha = 0^\circ \), \(t=0 \) (while in the actual simulation model, the value of \(t \) should not be zero \((t \neq 0) \), and the \(t \) should be 0.0001s at this moment); when \(\alpha = 30^\circ \), \(t=0.00167s \); \(\alpha = 45^\circ \), \(t=0.0025s \); \(\alpha = 60^\circ \), \(t=0.00333s \); \(\alpha = 90^\circ \), \(t=0.005s \), and so on.

When setting the parameters of the pulse signal generator, if \(\alpha = 60^\circ \), Pulse1’s Phase Delay should be 0.00333s, Pulse2’s Phase Delay should be 0.01+0.00333s=0.01333s, because the interval

...
of positive and negative half wave should be 0.02s.

The model diagram has been simulated, the parameter of the model diagram is set, and the algorithm Ode23tb or Oder15s has been selected. The wave form has been simulated from zero second to 0.06s. The simulation algorithm and simulation time parameter setting are shown in Figure 5. When the thyristor control angle $\alpha = 60^\circ$, The simulation model of single phase full wave rectifier circuit with resistive load is shown in Figure 6, from top to bottom, they are $u_1, u_g1, u_g2, i_{T1}, i_{T2}, i_d, u_d, u_{VT1}$ and i_2 instantaneous waveform. u_1 is sinusoidal voltage instantaneous value, u_g1 is the gate pulse of thyristor VT1 and VT4, u_g2 is the gate pulse of thyristor VT2 and VT3, i_{T1} is the current flowing through thyristor VT1 and VT4, i_{T2} is the current flowing through thyristor VT2 and VT3, i_d is load current, u_d is load voltage, u_{VT1} is the voltage of VT1, i_2 is the current flowing through the transformer T. U_d, i_d, U_{VT1} and i_2’s simulation waveform enlarged drawing is shown in Figure 7.

![Figure 5 The simulation algorithm and simulation time parameter setting](image1)

![Figure 6 $\alpha = 60^\circ$, $u_1, u_g1, u_g2, i_{T1}, i_{T2}, i_d, u_d, u_{VT1}$ and i_2’s instantaneous waveform](image2)
4 Conclusion

The MATLAB command operation results are consistent with the one of theoretical analysis. The theory and simulation results of single phase full wave rectifier circuit with resistive load have been analyzed with the application of Matlab visual simulation tool Simulink. The output voltage waveform that is obtained has been compared, and the paper further verifies the correctness of the simulation results. The paper validates the correctness of the model that has been built in this paper with the simulation analysis. Based on MATLAB/Simulink, single phase bridge rectifier circuit simulation analysis has been conducted in this paper, this method avoids the tedious drawing and calculation process in the conventional analysis methods, getting an intuitive and quick analysis method of rectifier circuit. The application of Matlab/ Simulink simulation can flexibly change the simulation parameters in the simulation process, and it can directly observe the simulation results that vary with parameters. The simulation research of rectifier circuit with application of Matlab lays the foundation of the analysis of single-phase bridge rectifier circuit and it is a powerful simulation software, which is worth popularizing and applying. It is also a good assistant tool for the experiment of power electronics technology.

Foundation Project

This paper is funded by the youth projects for creative talents in Guangdong province, Num(2014KQNCX244)

References

[5] WANG Jiu-he, YIN Hong-ren, ZHANG Jin-long, etc. Study on power decoupling control of three phase voltage source PWM rectifiers[C].[S.1.]: Power Electronics and Motion Control Conference, 2006.

