


Figure 4. The collection of radar charts showing the resource utilization on each dimension and execution time for the nine investigated combinations.

should be considered complementary to the EC and that we
cannot use the RUS to compare across classes of systems.

B. RUS for a Commercial Software Product

As an additional evaluation we applied the theory to a
commercial software product (Document Generator) with the
instructions to generate 5000 documents [9]. The metrics for
the radar chart were ‘% CPU time’ (CPU), ‘available MBytes’
(memory), ‘% disk idle time’ (hard disk), ‘power consumption’
(in Watt) and the ‘total Bytes per second’ (network). Compared
to Systester the network metric was included and and its range
was determined using Lan Speed Test7.

In this case an architectural change was applied to make
Document Generator multi-threaded. The resulting decrease
in CPU Utilization, i.e. from 49% to 19.2%, lowered the EC
per document with 67.1% This finding is visible in the radar
charts (Fig. 5) where a decrease in the the CPU and power
utilization can be observed. A minimal increase in utilization
of the disk and memory was found, whereas the network

7http://totusoft.com/lanspeed/

utilization remains unchanged. Especially the CPU utilization,
or more specifically the division of the workload between CPU
cores [9], seems decisive for the power dimension.

The RUS scores (Tbl. IV) were calculated using the execu-
tion time and appear to be in line with the EC measurements;
i.e. a lower score means less SEC. This finding possibly sug-
gests that the utilization patterns after adjusting the software
are more ‘natural’ to the system.

VI. DISCUSSION

In this research we investigated the possibility for a RUS
to express resource utilization in relation to the SEC. The
constructed score is based on those dimensions that are
deemed relevant for the software and is flexible to be adjusted
depending on the product and the environment in which it
will be executed. Initial evaluation showed promising results
to engage in green software practices. There are, however,
several limitation to our work which we discuss below.

Hardware dependency; Like EC, the RUS is dependent on
the hardware that the software is executed on. Although the
measurements are standardized, the ranges themselves showed

26



Figure 5. The radar charts for the Document Generator software product
before (left) and after (right) making the software multi-threaded [9].

considerable differences across systems. Comparing the RUS
and EC figures led to the insight that the RUS cannot be
used to compare a software product across classes of systems.
Additionally, it can be impossible to determine the ranges
in environments with ‘unlimited’ resources (e.g. cloud data
centers). Different benchmarks should be found when this is
the case, for example benchmark release of software to one
another to visualize the effect of software changes.

Visualization; The RUS is based on the theory related
to the radar chart. Even though we investigated different
theories, other options could exist that better fit the purpose.
For example, theories that better consider the relation between
dimensions or express a score based on the dimensions.

Robustness; The RUS was successfully applied to both a
synthetic (Systester) and commercial (Document Generator)
application, which shows the generic ability of the theory to
be applied. Although we are confident in the validity of our
results, more applications of RUS are required to prove or
disprove the robustness of the RUS.

Weight factor; The weight factor for calculating the RUS
is a topic that still requires further investigation. In our
experiment we could not motivate a higher score on one
combination of dimensions over the other and decided to set
the weight factor to ‘1’ for each combination. However, other
situations might require a thorough investigation to determine
the correct weight factors.

A. Experiment Limitations

Despite our best efforts, there are limitations to the experi-
ment as described:

Windows processes; Thirty minutes after rebooting we
observed an increase in activity for an unspecified period of
time. The cause is unknown, but we assume that Windows-
related processes are triggered by a timed mechanism which
we cannot control. However, we did not find significant
differences between runs executed after twenty or 200 minutes
and between Windows 7 and Windows Server 2008.

Measurement interval; WUP and Perfmon perform mea-
surements with a one second interval, while computers process
millions of instructions per second. Although we argue our
measurements are sufficient for our purposes, we acknowledge
the fact that data is lost with the instruments at hand.

Table IV
THE EC (IN JOULE) AND RUS FOR THE DOCUMENT GENERATOR

SOFTWARE PRODUCT BEFORE AND AFTER CHANGING THE SOFTWARE.

EC RUS
Single-threaded 17,560 2,313.09
Multi-threaded 5,782 1,644.49

Room temperature; Of the three systems the server was
the only one situated in a climate-controlled data center and as
a consequence we can only guarantee identical conditions for
this system. Although we tried to maintain consistency, we
acknowledge the fact that, among others, room temperature
could have influenced our measurements. We consider the
insignificant differences found between measurements as a
confirmation that the influence in our experiment was limited.

VII. CONCLUSION

In this paper we propose a metric to effectively communi-
cate resource utilization measurements for a software product
in relation to EC. The metric should be easy to understand,
reported uniformly and clearly communicate key findings. We
consider the viewpoints of multiple stakeholders wanting to
address the sustainability of their software product through
green software practices, and posed the following research
question: ‘How can we effectively express the resource uti-
lization for executing a software product in relation to the
SEC?’. We provide an answer by constructing the RUS.

Following the goals of the of radar chart, the RUS delivers
a single score based on selected dimensions and performance
metrics. To calculate the RUS, the equation to calculate the
surface of a radar chart was transformed into one that considers
the relation between dimensions. A weight factor is added
that enables stakeholders to determine the importance of each
pair of dimensions. As the measurements can be expressed
on a standardized scale they can be interpreted more easily,
do not require knowledge on the individual metrics and can
be compared between software applications. Additionally, the
radar chart provides a means to visualize the measurements
which helps to identify key findings.

Evaluating the RUS with two different datasets, showed that
the RUS should be considered complementary to the EC and
the execution time related to a software product. In general
a lower RUS corresponds to a lower EC consumption figure,
but with the server a case was also found where a lower RUS
was accompanied by a higher EC. In these situations a trade-
off should be made, like with quality attributes, favoring the
aspect that is considered more important in a specific context.
A limitation of the RUS found in its inability to be compared
across systems of different classes.

Based on the work presented in this paper, we identify
several direction for future research. First is to investigate
the RUS more thoroughly. For example, the RUS could be
used to compare between systems within the same class.
Also a (standardized) means to determine the weight factor
could aid in the RUS’ acceptance. A second direction is to
investigate the positioning of the RUS in relation to more

27



the generic eco-labels for the ICT domain. A final direction
is to use RUS to create awareness on green software during
the development process. By showing the impact of software
development activities, software developers are enabled to
address sustainability issues that might arise.

ACKNOWLEDGMENT

We would like to thank Fabiano Dalpiaz and Garm Lucassen
and the reviewers of ICT4S for their valuable feedback to
improve the paper.

REFERENCES

[1] S. Murugesan, “Harnessing green it: Principles and practices,” IT Pro-
fessional, vol. 10, no. 1, pp. 24–33, Jan 2008.

[2] Y. Sun, Y. Zhao, Y. Song, Y. Yang, H. Fang, H. Zang, Y. Li, and
Y. Gao, “Green challenges to system software in data centers,” Frontiers
of Computer Science in China, vol. 5, no. 3, pp. 353–368, 2011.

[3] K. Grosskop and J. Visser, “Identification of application-level energy op-
timizations,” in Proceedings of ICT for Sustainability (ICT4S). Atlantis
Press, 2013, pp. 101–107.

[4] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring energy
hotspots in software,” Automated Software Engineering, pp. 1–42, 2015.

[5] A. Hindle, “Green mining: a methodology of relating software change
and configuration to power consumption,” Empirical Software Engineer-
ing, pp. 1–36, 2013.

[6] S. Jansen, S. Brinkkemper, J. Souer, and L. Luinenburg, “Shades of gray:
Opening up a software producing organization with the open software
enterprise model,” Journal of Systems and Software, vol. 85, no. 7, pp.
1495–1510, 2012.

[7] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do program-
mers know about the energy consumption of software?” PeerJ PrePrints,
vol. 3, p. e1094, 2015.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
ser. SEI Series in Software Engineering. Pearson Education, 2012.

[9] E. A. Jagroep, J. M. E. M. van der Werf, R. Spauwen, L. Blom, R. van
Vliet, and S. Brinkkemper, “An energy consumption perspective on
software architecture,” in Software Architecture, ser. LNCS, no. 9278.
Springer, 2015, pp. 239–247.

[10] E. A. Jagroep, J. M. van der Werf, S. Brinkkemper, G. Procaccianti,
P. Lago, L. Blom, and R. van Vliet, “Software energy profiling:
Comparing releases of a software product,” in Proceedings of the
38th International Conference on Software Engineering Companion, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 523–532.

[11] F. Chasin, “Sustainability: Are we all talking about the same thing state-
of-the-art and proposals for an integrative definition of sustainability in
information systems,” in Proceeding of ICT for Sustainability (ICT4S).
Atlantis Press, 2014, pp. 342–351.

[12] P. Lago, S. A. Koçak, I. Crnkovic, and B. Penzenstadler, “Framing
sustainability as a property of software quality,” Commun. ACM, vol. 58,
no. 10, pp. 70–78, sep 2015.

[13] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Müller, F. Paulisch,
G. Scanniello, B. Penzenstadler, and O. Zimmermann, “Exploring ini-
tial challenges for green software engineering: summary of the first
GREENS workshop, at ICSE 2012,” ACM SIGSOFT Software Engi-
neering Notes, vol. 38, no. 1, pp. 31–33, 2013.

[14] G. Procaccianti, P. Lago, and G. A. Lewis, “Green architectural tactics
for the cloud,” in Software Architecture (WICSA), 2014 IEEE/IFIP
Conference on, April 2014, pp. 41–44.

[15] G. Kalaitzoglou, M. Bruntink, and J. Visser, “A practical model for eval-
uating the energy efficiency of software applications,” in Proceedings of
ICT for Sustainability (ICT4S-14). Atlantis Press, 2014.

[16] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W. G. J.
Halfond, and J. Clause, “How does code obfuscation impact energy
usage?” Journal of Software: Evolution and Process, 2016.

[17] ISO, “Systems and software engineering – systems and software quality
requirements and evaluation (SQuaRE) – system and software qual-
ity models,” International Organization for Standardization, Geneva,
Switzerland, ISO 2510:2011, 2011.

[18] N. Rozanski and E. Woods, Software Systems Architecture: Working
with Stakeholders Using Viewpoints and Perspectives. Addison-Wesley,
2011.

[19] S. Barlowe and A. Scott, “O-charts: Towards an effective toolkit for
teaching time complexity,” in Frontiers in Education Conference (FIE),
2015. 32614 2015. IEEE, Oct 2015, pp. 1–4.

[20] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proceedings of the 1st
ACM Symposium on Cloud Computing, ser. SoCC ’10. New York, NY,
USA: ACM, 2010, pp. 39–50.

[21] C. Ebert and S. Brinkkemper, “Software product management - an
industry evaluation,” Journal of Systems and Software, vol. 95, no. 0,
pp. 10 – 18, 2014.

[22] A. Kipp, T. Jiang, M. Fugini, and I. Salomie, “Layered green perfor-
mance indicators,” Future Generation Computer Systems, vol. 28, no. 2,
pp. 478 – 489, 2012.

[23] K. Lundfall, P. Grosso, P. Lago, and G. Procaccianti, “The green
practitioner: A decision-making tool for green ict,” in Proceedings of
ICT for Sustainability (ICT4S). Atlantis Press, 2015, pp. 74–81.

[24] D. Magalhães, R. N. Calheiros, R. Buyya, and D. G. Gomes, “Workload
modeling for resource usage analysis and simulation in cloud comput-
ing,” Computers & Electrical Engineering, vol. 47, pp. 69–81, 2015.

[25] M. Poess and R. O. Nambiar, “Energy cost, the key challenge of today’s
data centers: a power consumption analysis of tpc-c results,” Proceedings
of the VLDB Endowment, vol. 1, no. 2, pp. 1229–1240, 2008.

[26] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 2, pp. 46–55, 2009.

[27] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755 – 768, 2012, special Section: Energy efficiency in large-scale
distributed systems.

[28] R. Koller, A. Verma, and A. Neogi, “WattApp: an application aware
power meter for shared data centers,” in Proceedings of the 7th interna-
tional conference on Autonomic computing. ACM, 2010, pp. 31–40.

[29] P. Somavat, V. Namboodiri et al., “Energy consumption of personal
computing including portable communication devices,” Journal of Green
Engineering, vol. 1, no. 4, pp. 447–475, 2011.

[30] R. Carpa, O. Gluck, L. Lefevre, and J.-C. Mignot, “Improving the energy
efficiency of software-defined backbone networks,” Photonic Network
Communications, vol. 30, no. 3, pp. 337–347, 2015.

[31] J. Espadas, A. Molina, G. Jimnez, M. Molina, R. Ramrez, and D. Con-
cha, “A tenant-based resource allocation model for scaling software-
as-a-service applications over cloud computing infrastructures,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 273 – 286, 2013,
including Special section: AIRCC-NetCoM 2009 and Special section:
Clouds and Service-Oriented Architectures.

[32] E. Kern, M. Dick, S. Naumann, and A. Filler, “Labelling sustainable
software products and websites: Ideas, approaches, and challenges,” in
Proceedings of ICT for Sustainability (ICT4S). Atlantis Press, 2015,
pp. 82–91.

[33] G. Procaccianti, P. Lago, and G. A. Lewis, “A catalogue of green
architectural tactics for the cloud,” in Maint. and Evol. of Service-
Oriented and Cloud-Based Systems (MESOCA), 2014 IEEE 8th Int’l
Symp. on the, Sept 2014, pp. 29–36.

[34] H. Schütz, S. Speckesser, and G. Schmid, “Benchmarking labour
market performance and labour market policies: Theoretical foundations
and applications,” WZB Discussion Paper FS I 98-205, 1998. [Online].
Available: http://hdl.handle.net/10419/43918

[35] H. Mosley and A. Mayer, “Benchmarking national labour market
performance: A radar chart approach,” WZB Discussion Paper FS I
99-202, 1999. [Online]. Available: http://hdl.handle.net/10419/43952

[36] G. Bekaroo, C. Bokhoree, and C. Pattinson, “Power measurement of
computers: analysis of the effectiveness of the software based approach,”
Int. J. Emerg. Technol. Adv. Eng, vol. 4, no. 5, pp. 755–762, 2014.

[37] T. Vogelsang, “Understanding the energy consumption of dynamic ran-
dom access memories,” in 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, Dec 2010, pp. 363–374.

[38] N. Juristo and A. M. Moreno, Basics of Software Engineering Experi-
mentation, 1st ed. Springer Publishing Company, Incorporated, 2010.

[39] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[40] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

28

http://hdl.handle.net/10419/43918
http://hdl.handle.net/10419/43952



