Evaluation method of access capacity based on TSC in distribution network

Fengchuan Nie¹,a, Minfang Peng¹, Yong Xu¹, Haiyan Zhang¹, Liang Zhu², Hongwei Che², Zhengyi Liu²

¹College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China

²State Grid Hunan Electric Power Company, Changsha 410007, China

ₐemail: 1151952048@qq.com

Abstract—In order to select suitable lines and reduce approval process effectively, the article presents a method to evaluate access capacity based on total supply capability. Firstly, after making a brief introduction to total supply capability, we define access capacity and give two access capacity indexes, which are substation supply access capacity and network transfer access capacity. Secondly, based on constrained information of substation supply capability, network transfer capability, node voltage and node current, we present a model to evaluate access capacity and calculate it. At last, based on this method the article evaluate access capacity of a distribution network line with 44 nodes, the results show that this method can reflect the access capacity in distribution network line accurately.

Keywords—Distribution System; Access Capacity Evaluation; Total Supply Capability.

I. INTRODUCTION

A study on access capacity of the distribution network can select suitable lines and reduce approval process effectively.

For the distribution network, there are a lot of researches on the distribution planning, but there is no evaluation method of access capacity. It proposed the residual power supply capacity, the analysis and train of thought are given in [1], but there is no concrete model and constrained condition to evaluate. In [2] when calculating TSC, it put forward the concept of available supply capacity, but each main transformer and the link of the available supply capacity are not covered. So the research on access capacity of line and transformer in distribution network is little.

II. DEVELOPMENT OF CALCULATING TSC

The calculation of TSC experienced three stages[2-8]: the first stage was evaluating power supply capacity based on the distribution capacity, such as the method of capacity-load ratio; the second stage was based on power restoration, such as maximum load multiples method; the third stage was based on N-1 security criteria, substation capacity and power restoration. Two indexes extended from TSC expressed as the following:

SSC: The TSC of a distribution system when each feeder is not linked with any other.

NTC: The amount of TSC increased by interconnections among feeders.

III. LAYER-BY-LAYER BACK/FORWARD SWEEP DISTRIBUTION LOAD FLOW ALGORITHM

The algorithm calculate node voltage and node current consists of the following two steps:

Push forward the power: according to the Hierarchy matrix of network, push forward the power from the last layer to layer 1, update Branch terminal power step by step, then get the lower branch for every branch from Hierarchy matrix.

Return voltage: according to the Hierarchy matrix of network, return the power from layer 1 to the last layer, update Branch terminal node voltage step by step. that is, update node voltage of the end in the next layer.

IV. DEFINITION OF ACCESS CAPACITY IN THE DISTRIBUTION NETWORK

On the basis of the existing transmission contract, the available transmission capacity (ATC) [9] is the remanent actual physical transmission network. According to ATC we define access capacity in distribution system which is the maximum power, and takes into the N-1 safety criterion and the actual constraints account in a certain power supply area. And two indexes extended from access capacity expressed as the following:

Substation Supply Access Capacity: the access capacity of a distribution system when each feeder is not linked with any other. That is, any substation transformer has no connection with other substation transformers.

Network Transfer access capacity: the amount of access capacity increased by interconnections among feeders.

V. THE MODEL TO EVALUATE ACCESS CAPACITY BASED ON TSC

A. Links of the distribution network

1) Link of the rated capacity of main transformer[2]

\[X^T_R + R^T_Tr \leq kR^T_R \]

(1)
Where $R_i =$ rated capacity of transformer i; $X_i =$ access
capacity of transformer i; $T_i =$ loading rate of transformer i;
$k =$ overload factor of transformer for a short time, assuming
all transformers have the same k value ($k = 1.2$).

2) Link of substation supply capability

$$\sum_{i \in Z_i} X_i + \sum_{i \in Z_i} R_i T_i \leq SSC_i$$

(2)

Where $SSC_i =$ SSC of main transformer i; $Z_i =$ substation
i; $i \in Z$ represents the main transformer of substation i.

3) Link of rated capacity of output transmission line

$$Y_{ij} \leq C_{ij}$$

(3)

Where $Y_{ij} =$ the access capacity of the line which connect
transformer i and transformer j; $C_{ij} =$ capacity limitation of the
line which connect transformer i and transformer j.

4) Link of network transfer capability

$$\sum_{i \in Z_i} Y_{ij} \leq NTC$$

(4)

Where $NTC =$ the amount of TSC increased by
interconnections among feeders.

5) Link of node voltage and node current [10-12]

$$V_{min} \leq V_i \leq V_{max}$$

(5)

$$I_{a_i} \leq I_{max}$$

(6)

Where a_i is the father node of i; V_i is voltage magnitude
lower limit; V_{max} is actual voltage magnitude; I_{a_i} is actual current magnitude
through branch a_i.

B. Linear programming model

$$\max \sum_{i \in Z_i} X_i + \sum_{i \in Z_i} Y_{ij}$$

(7)

$$X_i + R_i T_i \leq kR_i$$

$$\sum_{i \in Z_i} X_i \leq SSC_i$$

$$Y_{ij} \leq C_{ij}$$

$$\sum_{i \in Z_i} Y_{ij} \leq NTC$$

$$V_{min} \leq V_i \leq V_{max}$$

$$I_{a_i} \leq I_{max}$$

(8)

In (7), we take the maximum sum of substation supply
access capacity and network transfer access capacity as the
objective. The (8) is based on constrained information of
substation supply capability, network transfer capability, node
voltage and node current. In the article, we assume that the
node voltage and the node current meet the condition.

VI. ANALYSIS OF EXAMPLE

We use a distribution network line [2] with 44 nodes as an
example shown in Fig1.

![Fig.1. the test distribution network line with 44 nodes](image)

In the figure above, 1-44 represent nodes, S1- S3 represent
three transformer substation, broken line represent output
transmission line and solid line represent distribution line.

A. Data of the distribution network

The following is date of transformer substation and line. All
the main feeders are JKLYJ-185.

| Table 1. output transmission line date of the test distribution network |
|---|---|---|
| output transmission line | conductor | Capacity,MVA |
| 21-23 | JKLY-120 | 6.35 |
| 22-30 | JKLYJ-185 | 11.30 |
| 25-29 | JKLYJ-120 | 7.64 |
| 24-32 | JKLYJ-70 | 4.43 |
| 27-28 | JKLYJ-150 | 8.83 |
| 26-31 | JKLYJ-95 | 6.02 |

| Table 2. transformer substation date of the test distribution network |
|---|---|---|---|
| Transformer | Transformer Voltage,kV/kV | Capacity,MVA | Load,MVA |
| 1 | 35/10 | 40 | 20 |
| 2 | 35/10 | 40 | 25 |
| 3 | 35/10 | 40 | 15 |
| 4 | 35/10 | 40 | 30 |
| 5 | 110/10 | 63 | 30 |
| 6 | 110/10 | 63 | 42 |

B. Substation supply access capacity and network transfer
access capacity

The total access capacity is 176.5MVA, Substation supply
access capacity is 132.0MVA, network transfer access capacity
is 44.6MVA.
Table 3. Result of the test distribution network

<table>
<thead>
<tr>
<th>Transformer</th>
<th>Substation supply access capacity</th>
<th>Output transmission line</th>
<th>Network transfer access capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.0</td>
<td>21-23</td>
<td>6.4</td>
</tr>
<tr>
<td>2</td>
<td>22.0</td>
<td>22-30</td>
<td>11.3</td>
</tr>
<tr>
<td>3</td>
<td>14.6</td>
<td>25-29</td>
<td>7.6</td>
</tr>
<tr>
<td>4</td>
<td>14.6</td>
<td>24-32</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td>29.4</td>
<td>27-28</td>
<td>8.8</td>
</tr>
<tr>
<td>6</td>
<td>29.4</td>
<td>26-31</td>
<td>6.0</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

Reference to the definition of the available transmission capacity (ATC), we define access capacity and give two access capacity indexes, which is substation supply access capacity and network transfer access capacity. Then based on TSC and taking constraint information of substation supply capability, network transfer capability, node voltage and node current into account, we present a model taking the maximum sum of substation supply access capacity and network transfer access capacity as the objective. On the basis of the above, we present the calculation linear programming model and use lingo to calculate. At last, it proves effective and feasible.

Along with the advancement of marketing-distribution-dispatching work, the demand for the efficiency of the power supply enterprise service is higher and higher. So the further research can focus on how to form the power supply scheme quickly based on access capacity, shorten the waiting time, even zero waiting.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foundation of China under Grant No.61173108 and 61472128, Hunan Provincial Natural Science Foundation of China No.10J12045 as well as 14JJ2150 and State Grid Corporation Science and technology projects of China No.5216A514001K.

References