Study on Capacity Expansion Problem of Minimum Cost Flow

Geng Liu

School of Economics and Management, China University of Geosciences, Wuhan Hubei China, 430074.
liujiangpin@263.net

Keywords: Directed networks; Minimum cost flow problem; Polynomial algorithm; Capacity expansion

Abstract. The minimum cost flow problem is the central object of study in the network flows. This paper studies capacity expansion problem of minimum cost flow. How to expand the network capacity effectively so that the network flow can reach a certain level with minimum total cost? In view of three types of expanding models: the arc-expanding model, the node-expanding model and the combination of arc-node expanding model; this article discusses the characteristics of the problems separately and a unified capacity expansion model is also proposed. Finally, an example has been provided in detail.

Introduction and Motivation

Capacity expansion can be seen almost everywhere in the world. For example, in order to increase the flow ability of a road network to a certain level, we wish to expand the road capacity. Similar expansion occurs to transportation system or telecommunication network.

In this article, we assume a directed network \(G(V, A, C, B, F) \) consisting of a set of nodes \(V = \{v_1, v_2, \ldots, v_n\} \), a set of arcs \(A \subseteq \{(v_i, v_j) | i=1,2,\ldots,n, j=1,2,\ldots,n\} \), a capacity vector \(C \), a cost vector \(B \) and a network flow vector \(F \). The component \(c_{ij} \) of \(C \) denotes the capacity of arc \((v_i, v_j) \). The component \(b_{ij} \) of \(B \) denotes the unit cost of arc \((v_i, v_j) \). The component \(f_{ij} \) of \(F \) denotes the flow of arc \((v_i, v_j) \). The source node is \(v_s \) and sink node is \(v_t \).

There Are Three Types of Expanding Models. The Arc-Expanding Model. In this model, the unit cost to increase the capacity of arc \((v_i, v_j) \) is \(\omega_{ij} \). The network capacity is increased by the expansion of arcs. This model is widely used. The path widening belongs to this kind of expanding model.

The Node-Expanding Model. On this model, it is assumed that the capacities of all arcs
(v_i, v_j) which start at the same node v_i should be increased by the same amount and that the unit
cost to make such expansion is ω_i. For example, the installation of new concentrators at the nodes
of a local access telecommunications network can be viewed as this kind of expanding model.

The Combination of Node-Expanding and Arc-Expanding Model. In the process of network
adjustment, the two models may carry on simultaneity. For example, in the telecommunications
industry, capacity expansion can be realized through the installation of new concentrators at the
nodes and replacing existing links with new type of links.

Problem Formulation
Given a directed network G(V, A, C, B, F) defined as above. Let α_i be the amount for
expansion capacity on node v_i, α_ij be the amount for expansion capacity on arc (v_i, v_j), R be
a given flow value that the network should be enhanced to, D be a given budget.

We also assume that the capacity and flow on every arc be integers and the optimal solutions be
integers, too.

The capacity expansion problem can be stated as follows: for a given value R, how can the flow
of minimum cost flow be increased to R with a minimum total cost?

To Solve This Problem, We Will Discuss It on the Three Expanding Models. On the
arc-expanding model, the problem can be stated as (LP1):

\[
\min \left(\sum_{(v_i,v_j) \in V} b_{ij} f_{ij} + \sum_{(v_i,v_j) \in V} \omega_{ij} \alpha_{ij} \right)
\]

s.t. \[
\sum_{j} f_{ij} - \sum_{j} f_{ji} = \begin{cases}
R, & i = s \\
-R, & i = t \\
0, & \text{otherwise}
\end{cases}
\]

\[
0 \leq f_{ij} \leq c_{ij} + \alpha_{ij}
\]

\[
\alpha_{ij} \geq 0, f_{ij} \geq 0
\]

This is a linear programming. The objective function states that we want to minimize the sum of
the expanding and transportation cost. We refer to the constraints (2) as mass balance flow bound
constraints, constraints (3) as flow bound constraints, and constraints (4) as nonnegative constraints.

On the arc-expanding model, the capacity expansion problem can be transformed into a
minimum cost flow problem with flow value R in an auxiliary network G'(V, A*, C', B') as
follows: for each arc (v_i, v_j) \in A, we have a second arc (v_i, v_j)'. Let A' be the set of all second
arcs and A* = A \cup A'. The capacity vector C' is defined by

\[
c'_{ij} = \begin{cases}
+\infty, & \forall (v_i, v_j) \in A'; \\
c_{ij}, & \forall (v_i, v_j) \in A
\end{cases}
\]

And the cost vector is defined by

\[
b'_{ij} = \begin{cases}
b_{ij}, & \forall (v_i, v_j) \in A; \\
b_{ij} + \omega_{ij}, & \forall (v_i, v_j) \in A'
\end{cases}
\]

Now we find out a minimum cost flow f* from v_s to v_t with a total flow value R in
network G'(V, A*, C', B'), which can be written as follows (LP1-1):

\[
\min \sum_{(v_i,v_j) \in A^*} b'_{ij} f_{ij}
\]
\[
0 \leq f_{ij} \leq c_{ij}, \forall (v_i, v_j) \in A^*, \quad \text{(8)}
\]

\[
\sum_j f_{ij} - \sum_j f_{ji} = \begin{cases} R, & \text{if } i = s; \\ -R, & \text{if } i = t; \\ 0, & \text{otherwise} \end{cases} \quad \text{(9)}
\]

The problem can be solved by strong polynomial algorithms and the optimal flow \(f^* \) on the arc \((v_i, v_j)^*\) corresponds to the capacity value which we need to increase on arc \((v_i, v_j)^*\). The total cost for expansion and transportation is the objective value of (LP1-1), that is, the minimum cost of flow \(f^* \) on \(G(V, A^*, C') \). Therefore, the problem (LP1) can be solved by strong polynomial algorithm.

On the node-expanding model, the problem can be expressed as (LP2):

\[
\min(\sum_{(v_i, v_j) \in V} b_{ij} f_{ij} + \sum_{i=1}^{n} \omega_i \alpha_i)
\]

\[
\sum_j f_{ij} - \sum_j f_{ji} = \begin{cases} R, & \text{if } i = s; \\ -R, & \text{if } i = t; \\ 0, & \text{otherwise} \end{cases}
\]

\[
0 \leq f_{ij} \leq \alpha_i + c_{ij}
\]

\[
\alpha_i \geq 0, f_{ij} \geq 0
\]

This is a linear programming. The objective function states that we want to minimize the sum of node-expanding and transportation cost. The constraints (11), (12), (13) are the same as (LP1).

On the combination of node-expansion and arc expansion model, the problem can be stated as (LP3):

\[
\min(\sum_{(v_i, v_j) \in V} b_{ij} f_{ij} + \sum_{(v_i, v_j) \in A} \omega_{ij} \alpha_{ij} + \sum_{v_i \in V} \omega_i \alpha_i)
\]

\[
\sum_j f_{ij} - \sum_j f_{ji} = \begin{cases} R, & \text{if } i = s; \\ -R, & \text{if } i = t; \\ 0, & \text{otherwise} \end{cases}
\]

\[
0 \leq f_{ij} \leq \alpha_i + \alpha_{ij} + c_{ij}
\]

\[
\alpha_{ij} \geq 0, f_{ij} \geq 0
\]

This is a linear programming. The objective function states that we want to minimize the sum of expanding and transportation cost. The constraints (15), (16), (17) are the same as (LP1).

We can see: (LP1) and (LP2) are all special cases of (LP3). We only consider one type of expanding model on (LP1) and (LP2). That is, the general expanding type is the combination of node-expansion and arc expansion model. So, (LP3) is the general model.

Case Study

Given a directed network \(G(V, A, C, B, F) \) described in Fig.1. The first number in brackets besides every arc is the capacity \(c_{ij} \) of that arc and the second is the unit cost \(b_{ij} \) of that arc. It is easy to know the present maximum flow is 5. The unit cost \(\omega_{ij} \) for arc-expanding and \(\omega_i \) for node-expanding are shown in Table 1 and 2 respectively.
The problem is: for a given value R=8, how can the flow of minimum cost flow be enhanced to 8 with minimum total cost?

![Network for Expansion](image)

Figure 1. Network for Expansion

<table>
<thead>
<tr>
<th>Arcs</th>
<th>ω_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 2)$</td>
<td>3</td>
</tr>
<tr>
<td>$(1, 3)$</td>
<td>2</td>
</tr>
<tr>
<td>$(1, 4)$</td>
<td>4</td>
</tr>
<tr>
<td>$(2, 3)$</td>
<td>2</td>
</tr>
<tr>
<td>$(2, 5)$</td>
<td>2</td>
</tr>
<tr>
<td>$(3, 5)$</td>
<td>3</td>
</tr>
<tr>
<td>$(4, 3)$</td>
<td>2</td>
</tr>
<tr>
<td>$(4, 5)$</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nodes</th>
<th>ω_{i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

As stated above, we establish mathematical formulations separately. We solve the problem with Excel. The results are shown below.

On the arc-expanding model, the total cost is 43. The expansion arcs are $(1, 3)$ and $(3, 5)$, the expansion capacity are both 3.

On the node-expanding model, the minimum cost is 40. The expansion nodes are 1, 3 and 4, the expansion capacity are all 1.

On the combination of node-expanding and arc-expanding model, the minimum cost is 39. The expanding arc is $(3, 5)$ and expansion capacity is 1. The expansion node is 1 and 4. The expansion capacity are both 1.

The results show: on the combination of node-expanding and arc-expanding model, the expansion cost is the lowest among the three models.

Conclusion

Either node-expanding model or arc-expanding one has its own superiority. If they could be combined properly, a better result can be reached. We also point out: the combination of node-expansion and arc expansion model is the general expanding type. Under the foundation of separate discussion, we establish a general linear programming model. This makes the model more practical. Possible extension of this paper would be to allow arbitrary demand. A more general model is currently under investigation.
References

