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Abstract—By analyzing the heat transfer situation of the 
polymerase chain reaction (PCR) instrument pedestal, a 
mathematical model to reflect the temperature field function of 
the pedestal is proposed, and then this model is simplified to 
obtain a simple two-dimensional heat transfer model. 
According to the results of the simplified mathematical model, 
the temperature field of the PCR instrument pedestal is 
calculated and simulated. And according to the calculation of 
two-dimensional temperature field, the influence of various 
parameters the on the pedestal’s temperature field is analyzed 
when the instrument is working in an uneven heating mode. 

Keywords-PCR instrument; two-dimensional temperature 
field; mathematical model; various parameters 

I. INTRODUCTION 

Polymerase Chain Reaction (Polymerase Chain Reaction 
instrument, PCR instrument) is the basis of the molecular 
biology of instruments, the experiment requires its pedestal 
temperature gradient can be more and the controlling of 
heating can be more precise. The heat source of the PCR 
instrument discussed in this article is the semiconductor 
refrigerator thermoelectric cooler, (TEC) located at the 
bottom of the pedestal. When their working modes are 
uniform, pedestal’s temperature field is only related to time 
and the height from the cooler. For one dimensional 
temperature fields, there have been many studies on the 
model. When the coolers at the bottom of the pedestal in 
different working modes, due to the different transfer of heat, 
pedestal’s temperature field not only related to time and 
height, but also the heat flux of the coolers. It means the 
temperature field is a two-dimensional temperature field. 
This paper mainly analyzes this model. 

II. THE BASIC PRINCIPLE OF HEAT TRANSFER 

A. Fourier's Law 

The Fourier's law was proposed by B.J.Fourier (Baron 
Jean Baptiste Joseph Fourier), according to a large number 
of experimental phenomena about the fundamental laws of 
heat flow and temperature field. For isotropic material it can 
be expressed as: heat flow is proportional to the temperature 
gradient, in the opposite direction. Here the temperature 
gradient is the direction of the temperature rising, but the 
heat should flow on the direction of the temperature 
decrease. Here is the mathematical form of the Fourier's law. 

t q grad                                   (1) 

 is the material coefficient of thermal conductivity, the 

unit is 1W m K  （ ）  , q as the heat flow, t for the 
temperature field function. 

B. Heat Transfer Differential Equation 

For analyzing the temperature field distribution, 
according to the law of conservation of energy and Fourier's 
law, we can get the heat transfer differential equation of 
solid internal: 

2 vqt
a t

c 


  
                               (2)



t as the temperature field function, is a function of time  
and space coordinates, a=λ/(ρ·c) is material thermal 
diffusivity,  means density material, c means the volume of 
material heat capacity, means the heating rate of the 
inside heat source, said unit per unit time per unit volume of 

heat yield, is the Laplace operator. 

III. INSTRUCTION OF HEAT TRANSFER MODEL 

A. Establishment of Heat Transfer Model 

Integrated physical model of the PCR instrument is 
shown in Figure 1. 

 
FIGURE I. THE PHYSICAL MODEL OF THE PCR INSTRUMENT 

There are two thermoelectric coolers (TEC) located at 
the bottom of the pedestal, which are used as heat source, 
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and the pedestal has no internal heat source. According to 
the actual heating conditions, while both of thermoelectric 
coolers are placed at the bottom of the base evenly. It can be 
considered that thermoelectric coolers cover the bottom of 
the base and contact well with the pedestal, ignoring the 
thermal contact resistance.  

Meanwhile considering that both thermoelectric coolers 
heat flows the same on the width direction, Width dimension 
can be also ignored. Therefore, the base can be seen as a 
two-dimensional heat transfer model of planar sheet, as 
shown in figure 2. 

 
FIGURE II. THE THERMAL MODEL OF THE PEDESTAL 

Among four borders of the planar sheet model, the 
bottom border contacts with the thermoelectric coolers in 
order to have heat exchange, so its boundary condition is 
determined by thermoelectric cooler working conditions, in 
consequence the boundary condition can be regarded as the 
second boundary condition, heat flux boundary. 

The remaining three borders have heat exchange by air 
convection, heat flux is relatively small and can be further 
reduced by thermal insulation measures, so the boundary 
condition of these three borders can be simplified as the 
adiabatic condition. 

The initial temperature of the base is uniform, and the 
differential equation of heat transfer is a linear equation, so 
the initial temperature can be regarded as the zero reference 
point, while the initial temperature of the base can be 
defining as 0. 

However, due to the existence of the tube holes and test 
tube reagents on the base, it is not uniform in the pedestal, 
which means, the thermal conductivity coefficient and the 
geometry of the base model is not uniform. In order to 
realize the uniformity of the thermal conductivity coefficient 
and the geometry of the base model, the holes and test tubes 
on the pedestal are considered to be the same material as the 
pedestal. 

Due to the different thermal conductivity coefficient of 
test tube, tube holes and the pedestal material, actually there 
will be error in this process. Thus there is a virtual heat 
source , which is used to eliminate the error. In this way 
the mathematical description of the model is  

Differential equation:  
2 2

2 2
+ vqt t t

a
x y c 

   
     

 

Boundary condition:  

0,0 , 0, 0
t

x y d
x

 
    


               

, 0 , 0, 0
t

x l y d
x

 
    


                  

 y 0,0 , 0, - ( )
t

x l q x
y

  
    


             (3)

y ,0 , 0, 0
t

d x l
y

 
    


                      

Initial condition: τ=0，t=0 

 is used to compensate thermal difference, which is 
caused by different thermal conductivity coefficient between 
tube holes and the pedestal. It equals to the same external 
condition, which means, in the condition of real- pedestal 
temperature field, the absorbed thermal difference between 
base material and tube reagents. 

B. Model Simplification 

This paper mainly discusses the influence of each 
parameter on the temperature field of the base.  

In the model above, there is functional relationship 
between the virtual heat source  and the base temperature 
field. Suppose the temperature of the base is t, unit step 
temperature response of tube holes is , and the base 
material temperature response under the condition of the 
same geometry is , thus  can be expressed as: 

 2 1
v

t t
q t

 
                                       (4)



Considering of the operation complexity in the virtual 
heat source, as well as the pedestal temperature field effects 
on the virtual heat source, and the value of the heat source is 
direct proportion to the pedestal temperature field, when 
discussing influence factors of the base temperature field, 
each factor influence through the virtual heat source is 
proportion to the temperature field itself, therefore the 
influence of the virtual heat source can be ignored for now. 

When two pieces of thermoelectric coolers work with 
different efficiency, the heating mode can be expressed in 
Figure 3. 
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FIGURE III. THE HEATING MODE 

Define the left side of the thermoelectric cooler working 
flow rate as 1q , the right side working flow rate as 2q  . 

According to the simplified two dimensional heat 
transfer model above, when the pedestal length is l and the 
height is D, the temperature field function of the pedestal 
can be expressed as the function solution of the following 
model. 

Differential equation:  
2 2

2 2

t t t
a

x y
   

     
 

Boundary condition: 

0,0 , 0, 0
t

x y d
x

 
    


                 

, 0 , 0, 0
t

x l y d
x

 
    


                   

 y 0,0 , 0, - ( )
t

x l q x
y

  
    


           (5)

y ,0 , 0, 0
t

d x l
y

 
    


                   

Initial condition: τ=0，t=0 

In formula, 

1

2

, 0
2( )

,
2

l
q x

q x
l

q x l

   
  


                     (6)

IV. THE SOLUTION OF THE MODEL 

A. Solution of the Green's Function 

The Green's function [1] can be used to solve this heat 
conduction model. The long time Continue heat flux can be 
seen as a superposition of multiple local within a single 
point of instantaneous heat source. Then the temperature 
field of the whole model is a superposition of temperature 

fields of all instantaneous point heat sources. The intensity 
of this point heat source can be chosen as ,containing the 
heat needed for higher unit volume object 1℃ .Here we 
introduce the  function. This function 

satisfies  
0, 0

δ
 , 0

x
x

x


  

 and  
-

1x



  . Then the 

inner heat source can be expressed 
as ( ') ( ') ( ')c x x y y        . The Green’s 

function, ' ', , , , , 'G x y x y （ ） ,is the temperature field 
function of a single instantaneous heat source. It says the 
temperature field produced by the instantaneous heat source 
at ' , 'x x y y   when '  . Obviously, the Green's 
function to satisfy the following equation: 

2 2

2 2
=

G G G
a

x y
   

    
                          

' , ( ') ( ')G x x y y                          

 0 or 0,0 , 0,x x l y d
G

x
 

  


  　(7)

0 or 0,0 , 0,y y d x l
G

y
 

  


      

Using the method of separation of variables, we can 

obtain x yG G G  ; 

2 ( ')

1

1 2
cos 'cosna

x n n n
n

n
G e x x

l l l
     


 



    ，  (8) 

2 ( ')

1

1 2
cos 'cosma

y m m m
m

m
G e y y

d d d
     


 



   ，   (9)

B. Solution of the Model 

The heat flux on the bottom boundary of the model can 
be seen as a number of heat points on the time series. 
Considering the transformation between the boundary heat 
flux intensity and the heat intensity when obtaining the 
Green’s function, the whole temperature field can be writing 
as  

0 0

1
( , , ) ( , , , ', ' 0, ') ' '

l

xt x y q G x y x y dxd
c


   


  

 

      (10) 
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Into xq  and the Green’s function ' ', , , , , 'G x y x y （ ）and 

we can get the solution. 

t x y xyt t t t        (11) 

 1 2

2x

a q q
t

d





   (12) 

It says the integral average temperature rise of the 
pedestal under the action of continued heat flow. 

2

1 2
3

1

2( ) 1
sin cos

l 2

na
n

x n
n n

lq q e
t x

d

   
 





 
     (13) 

It says the of the change of the temperature field in the x 
direction caused by the uneven heat flux; 

2

1 2
2

1

1
cos

ma

y m
m m

q q e
t y

d

 


 





 
             (14) 

It says the change of the temperature field in the y 
direction when the heat flows from the bottom to the top 
surface; 

2 2( )
1 2

2 2
1 1

4( ) 1
sin cos cos

( ) 2

n ma
n

xy n m
n m n n m

lq q e
t x y

dl

     
   

  

 

 


    (15) 

It says the change of temperature field caused by the 
uneven heat which flows from the bottom to the top surface. 

C. The Simulation Analysis 

The material of the pedestal is aluminum. We can check 

its coefficient of thermal conductivity , 
the thermal diffusivity 1λ 238 ( )W m K    . The length of 

the base is 0.12ml   , and height is 0.01md  . Take 
5 2

1 1 10 W mq     and 2 =0q  , namely the cooler on the 

left side works and the cooler on the right side doesn't work. 
Then we can get the temperature field of the pedestal on this 
working mode. To discuss the effect of the influence factors 
on the temperature field of the pedestal, we can adopt the 
way of controlling variables by drawing the response curve 
of the temperature field about each single factor. The result 
is shown in figure 4:  

 

FIGURE IV(A). THE RESPONSE OF THE TEMPERATURE FIELD 
OVER TIME ON THE TOP SURFACE 

 
FIGURE IV(B). THE DISTRIBUTION Of TEMPERATURE FIELD ON 

X DIRECTION WHEN =10s 

 
FIGURE IV(C). THE DISTRIBUTION Of TEMPERATURE FIELD ON Y 

DIRECTION WHEN =10s 

The response of the pedestal’s temperature field over 
time can be seen from the figure 4a. On the left side, the 
TEC works and provides heat for the pedestal. The 
pedestal’s temperature increases and is roughly proportional 
to time after a short delay of thermal conductivity. The right 
side of the TEC doesn't work. Relying mainly on the 
internal heat transfer heat, the pedestal’s temperature on the 
right side is significantly lower than the left and increases 
slower with longer time delay. 

The figure 4b says the pedestal’s temperature field 
distribution along the length of x direction. Due to the 
constant supply of heat on the left side, the temperature on 
the left significantly higher than that on the right side where 
there is no heat source. In the central, due to the effect of the 
heat flow in the pedestal itself, which cooling the hot left 
side and heating the cold right side, temperature difference 
decreases. 

The figure 4c says the pedestal’s temperature field 
distribution along the height direction y. Because of the heat 
source located at the bottom of the pedestal on the left side, 
the temperature of the left side has a certain temperature 
drop gradient along the height direction. The right side of 
the pedestal is heated by the heat flux flows from the left 
side. So it’s less affected by the height. 

V. SUMMARY 

Based on PCR instrument pedestal heating mode and the 
working situation, using virtual heat source instead of the 
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original base in geometric shapes and coefficient of thermal 
conductivity inhomogeneity, this article established a 
mathematical model for the temperature field of the PCR 
instrument pedestal. And according to the simplified model, 
the pedestal’s temperature field is calculated. The pedestal’s 
temperature field’s distribution and its response over time is 
also discussed. The pedestal’s temperature generally is 
proportional to the heat flux and heating time, but the 
distribution of temperature field is also effected by the 
TEC’s working conditions and the heat flowing in the 
pedestal. On the one hand, the pedestal’s temperature is 
proportional to the heat flux the TEC supplied. There is high 
temperature in the TEC heating part and low temperature in 
the no heating part. And the temperature is higher in where 
is nearer to the heat source. Therefore, the temperature 
difference is formed within the pedestal. On the other hand, 
the effect of heat flowing will try the best to reduce the 
difference in temperature between the adjacent parts. The 
bigger the temperature difference, the more obvious the 
effect is, which makes the base temperature field to keep 
smooth. This analytical simulation of temperature field 
model for PCR instrument pedestal may provide some 
reference data to temperature controlling. 
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