Effects of graphene oxide on dispersion stability of Titanium dioxide nanoparticles

Pingping Song¹, Yongpeng Wei, and Xuesong Cao *a

¹College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
*a caoxuesong521123@126.com

Keywords: graphene oxide, titanium dioxide nanoparticles, dispersion stability, heteroaggregation.

Abstract. In this work, we investigated the effects of GO on dispersion stability of the two types of TiO₂ NPs under different pHs. At pH 4, heteroaggregation may occur between GO and the two types of TiO₂ NPs (TiO₂ Nanotube and TiO₂ Nanowire), enhancing the sedimentation of TiO₂ NPs. However, at pH 7 and 10, GO enhanced the suspension of the two types of TiO₂ NPs. Electrostatic interaction could be a major mechanism for TiO₂ NPs-GO interaction.

Introduction

Titanium dioxide nanoparticles (TiO₂ NPs) are widely used in commercial applications such as photocatalysts, ceramic membranes, and cosmetic pigment additives [1]. Graphene Oxide (GO) is a promising material for wide applications such as dispersing agent, adsorbent and catalytic material [2, 3]. With the rapid increases in production and application, TiO₂ NPs and GO will be released into aquatic environment. Upon exposure, they will exhibit adverse impacts on organisms. Hund-Rinke and Simon (2006) reported that TiO₂ NPs can inhibit the growth of algae and the immobilization of daphnia [4]. Once TiO₂ NPs are released into the aquatic environment, their fate and transport will affect their phototoxicity and ecotoxicity [5, 6]. Tong et al. revealed that the presence of both nano-ZnO and dissolved zinc eliminated the damaging effect of nano-TiO₂ on bacterial cell membranes, which was explained by a reduced extent of bacteria/nano-TiO₂ contact [7]. GO can disperse in water to form stable colloidal suspensions [8], and GO may interact with TiO₂ NPs, altering the potential exposure pathways and bioavailability of TiO₂ NPs. Therefore, it is important to investigate the effects of GO on the fate and transport of TiO₂ NPs.

The main objective of this study was to investigate the effects of GO on dispersion stability of TiO₂ NPs under different pHs.

Materials and Method

Suspension and Sedimentation Experiment. The two types of TiO₂ NPs (TiO₂ Nanotube and TiO₂ Nanowire) were purchased from Nanjing XFNANO (China). GO was produced by the modified Hummers method [9]. TiO₂ NPs stock solution (200 mg/L) was prepared by sonicating for 10 min (20 kHz, FB 120, Fisher Scientific, USA). GO stock solution (250 mg/L) was prepared by sonicating for 60 min (20 kHz, FB 120, Fisher Scientific, USA). The pH of the suspension was adjusted by adding negligible amounts of NaOH or HCl. 10 mL TiO₂ NPs stock solution and 10 mL DI water were mixed to get 100 mg/L TiO₂ NPs. 10 mL TiO₂ NPs stock solution, 6 mL DI water, and 4 mL GO stock solution were mixed to get the mixture of 100 mg/L TiO₂ NPs and 50 mg/L GO. The mixtures were shaken (150 rpm in dark) at 25 °C for 36 h and then settled for 5 h. The dispersion stability of TiO₂ NPs was measured by UV-Vis spectrophotometer (SHIMADZU 2550, Japan). Briefly, the supernatants (3 mL) were carefully moved to quartz cuvette and examined at 800 nm to get the absorbance A. Before sedimentation, the suspensions (3 mL) were also examined at 800 nm to get the absorbance A₀. The absorbance of GO at 800 nm could be negative (data were not shown), so the sedimentation rate of TiO₂ NPs is calculated by the equation as follows:

\[
\text{Sedimentation Rate} \% = \frac{(A_0-A)}{A_0} \times 100\%
\]
Statistical Analysis. Data was analyzed using a one-way analysis of variance (ANOVA) and compared with LSD test. All data included three replicates and standard error was statistically analyzed (p<0.05).

Results and discussion

Characterization of TiO$_2$ NPs and GO. Characterization of TiO$_2$ NPs and GO was analyzed by transmission electron microscopy (TEM, H-7650, Hitachi, Japan). The TEM images showed that the length of TiO$_2$ Nanotube was 100-200 nm and the width was ~10 nm (Fig. 1A). The length of TiO$_2$ Nanowire was 50-300 nm and the width was ~ 10 nm (Fig. 1B). The lateral size of GO sheets was at the micrometer level, and the GO sheets were flexible and could be folded (Fig. 1C).

![Fig. 1 TEM images of TiO$_2$ NPs and GO. (A) TiO$_2$ Nanotube; (B) TiO$_2$ Nanowire; (C) GO.](image)

The zeta potentials of TiO$_2$ NPs and GO were measured by Zetasizer (Nano ZS90, Malvern, UK). The zeta potentials of TiO$_2$ NPs and GO under different pHs were showed in Table 1. At pH 4, the zeta potential of TiO$_2$ Nanotube and TiO$_2$ Nanowire was 5.52 mV and 2.30 mV, respectively. At pH 7, the zeta potential of TiO$_2$ Nanotube and TiO$_2$ Nanowire was -32.5 mV and -47.4 mV, respectively. At pH 10, the zeta potential of TiO$_2$ Nanotube and TiO$_2$ Nanowire was -41.5 mV and -48.1 mV, respectively. However, GO was highly negatively charged at 4, 7, and 10.

![Table 1 The zeta potentials of TiO$_2$ NPs and GO under different pHs](image)

<table>
<thead>
<tr>
<th>pH</th>
<th>TiO$_2$ Nanotube (mV)</th>
<th>TiO$_2$ Nanowire (mV)</th>
<th>GO (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5.52±0.57</td>
<td>2.30±0.3</td>
<td>-40.5±0.9</td>
</tr>
<tr>
<td>7</td>
<td>-32.5±1.5</td>
<td>-47.4±4.3</td>
<td>-40.2±2.0</td>
</tr>
<tr>
<td>10</td>
<td>-41.5±2.0</td>
<td>-48.1±2.4</td>
<td>-42.1±1.8</td>
</tr>
</tbody>
</table>

Effects of GO on Dispersion Stability of TiO$_2$ NPs. Fig. 2 showed the effects of GO on dispersion stability of TiO$_2$ NPs under different pHs. At pH 4, the presence of GO enhanced the sedimentation rate of the two types of TiO$_2$ NPs in comparison with that in the absence of GO. It showed that GO enhanced the sedimentation of the two types of TiO$_2$ NPs at pH 4. For the two types of TiO$_2$ NPs, GO enhanced the sedimentation rate of TiO$_2$ Nanotube more significantly than that of TiO$_2$ Nanowire. However, at pH 7 and 10, the presence of GO reduced the sedimentation rate of the two types of TiO$_2$ NPs in comparison with that in the absence of GO. It showed that GO enhanced the suspension of the two types of TiO$_2$ NPs at pH 7 and 10. For the two types of TiO$_2$ NPs, GO reduced the sedimentation rate of TiO$_2$ Nanowire more significantly than that of TiO$_2$ Nanotube. In Table 1, TiO$_2$ NPs and GO were opposite charged at pH 4, heteroaggregation may occur between GO and the two types of TiO$_2$ NPs. However, TiO$_2$ NPs and GO were both highly negatively charged at pH 7 and 10. We assumed that electrostatic interaction could be a major mechanism for TiO$_2$ NPs-GO interaction. The results in our study were consistent of the study on the interaction between GO and goethite.$^{[10]}$
Summary

At pH 4, heteroaggregation may occur between GO and the two types of TiO$_2$ NPs, enhancing the sedimentation of the two types of TiO$_2$ NPs. For the two types of TiO$_2$ NPs, GO enhanced the sedimentation rate of TiO$_2$ Nanotube more significantly than that of TiO$_2$ Nanowire. At pH 7 and 10, GO enhanced the suspension of the two types of TiO$_2$ NPs. For the two types of TiO$_2$ NPs, GO reduced the sedimentation rate of TiO$_2$ Nanowire more significantly than that of TiO$_2$ Nanotube. Electrostatic interaction could be a major mechanism for TiO$_2$ NPs-GO interaction.

References

