Influence of sintering technology on microstructure and mechanical properties of ZrB$_2$-YAG-Al$_2$O$_3$ ceramics

Jie-Guang Song 1a, Ming-Han Xu1, Shi-Bin Li1, Shi-Zhe Li1, Ting-Ting Xia1, Yao-Qi Li1, Ning Wang1, Si-Yuan Yu1 and Lin Chen2

1 Engineering & Technology Research Center for Materials Surface Remanufacturing of Jiangxi Province, School of Mechanical and Materials Engineering, Jiujiang University, Jiujiang 332005, China

2 School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China

a songjieguang@163.com

Keywords: Ultra-high-temperature ceramics; ZrB$_2$; Sintering technology; Mechanical property.

Abstract. ZrB$_2$, YAG and Al$_2$O$_3$ are widely applied because of some excellent performances, but ZrB$_2$ is easily oxidized in the high-temperature air. To keep advantages and improve disadvantages of ZrB$_2$, the shell-core structure Al$_2$O$_3$-Y$_2$O$_3$/ZrB$_2$ composite powders are prepared by the co-precipitation methods, the high density ZrB$_2$-YAG-Al$_2$O$_3$ ceramics is prepared by the spark plasma sintering (SPS). The mechanical properties of prepared ceramics under the 20MPa sintering pressure and 4min holding time are shown, which indicates the mechanical properties are increased with increasing sintering temperature, and the increasing ratio of mechanical properties is faster at sintering temperature from 1300℃ to 1700℃. When the sintering condition is 1700℃, 20 MPa and 4 minutes, the Young’s modulus and the fracture toughness are 421.8 GPa and 12.23 MPam$^{1/2}$, respectively. The reinforced phase (YAG-Al$_2$O$_3$) is coated on the surface of ZrB$_2$ crystal, that is to say, the YAG-Al$_2$O$_3$ is show on the crystal boundary, which is help for the densification and the mechanical properties.

Introduction

ZrB$_2$ is posed particular interest due to the unique property combination of high refractoriness, high-electrical and high-thermal conductivity, chemical inertness against molten metals or nonbasic slags and good thermal shock resistance [1], which is become candidates for hightemperature applications where corrosion-wear-oxidation resistance is demanded. ZrB$_2$ poses several applications such as Hall-Heroult cell cathodes for electrochemical processing of aluminium, evaporation boats, crucibles for handling molten metals, thermowell tubes for steel refining, thermocouples sleeves for high-temperature uses, nozzles, plasma electrodes, or as dispersoid in metal and ceramic-matrix composites for heaters and igniters. In addition, ZrB$_2$ is a metallic conductor with electrical resistivity comparable with those of their parent metals. This permits to produce complex components at reduced shaping costs. ZrB$_2$, because of its higher costs of production, has found a limited number of applications [2].

Yttrium aluminum garnet (YAG) with a chemical composition of Y$_3$Al$_5$O$_{12}$ is an important advanced structural and functional material. Because of its relatively stable lattice structure and large thermal conductivity, it is used as a host for solid-state laser materials in luminescence systems and in the window material for a variety of lamps. YAG also has great potential application as a high-temperature engineering material because of its good high-temperature strength as well as its superior creep resistance [3-4].

To keep advantages and improve disadvantages of ZrB$_2$, the shell-core structure Al$_2$O$_3$-Y$_2$O$_3$/ZrB$_2$ composite powders were prepared by the co-precipitation methods, the high density ZrB$_2$-YAG-Al$_2$O$_3$ ceramics is prepared by the spark plasma sintering (SPS) and the microstructure and mechanical properties were investigated.
Materials and experimental

Analytical grade of aluminum nitrate, yttrium nitrate, ammonia and commercially available ZrB$_2$ powder (99.5% in purity) were used. ZrB$_2$ particles were coated with Al$_2$O$_3$-Y$_2$O$_3$ composite particles via the co-precipitation method. ZrB$_2$-YAG-Al$_2$O$_3$ ceramics were prepared using coated Al$_2$O$_3$-Y$_2$O$_3$/ZrB$_2$ shell-core composite particles on the surface of ZrB$_2$ particles with spark plasma sintering (SPS).

ZrB$_2$-YAG-Al$_2$O$_3$ ceramics were prepared with the SPS (Mode: SPS-1050, Japan). Phase analysis was identified by X-ray powder diffraction (XRD) (Model: D/Max-RB, Japan). Microstructure analysis was performed by scanning electron microscopy (SEM) (Model: JSM-5610LV, Japan). Mechanical properties of ZrB$_2$-YAG-Al$_2$O$_3$ ceramics was tested.

Results and discussion

Fig.1 Sintering shrinkage curve of ZrB$_2$-YAG-Al$_2$O$_3$ ceramics

The sintering curves for preparing 80wt%ZrB$_2$-YAG-Al$_2$O$_3$ multiphase ceramic materials from different composite raw materials with the spark plasma sintering technique are shown in Fig.1. The Z-axis displacement of spark plasma sintering shows the shrinkage state of a ceramic body during the sintering process, when the value of the Z-axis displacement increases, this indicates the ceramic body is shrinking. The Z-axis displacement shows the shrinkage state of coated Al$_2$O$_3$-Y$_2$O$_3$ powders and mixed YAG powders, respectively. The composite powders with Al$_2$O$_3$-Y$_2$O$_3$ coated show a rapid shrinkage displacement from 700°C to 1000°C, where the second biggish shrinkage displacement also is shown from 1000°C to 1600°C, the Z-axis displacement is not varied basically above 1600°C. The sintering temperature curve is broken down into four parts, which include the preheating process below 700°C, the reaction process from 700°C to 1000°C, the sintering process from 1000°C to 1600°C, and the adjustment of the microstructure above 1600°C. The densification occurs mainly during the reaction process and sintering process, that is to say, the sintering processing is shown from 700°C to 1600°C. YAG is produced from 700°C to 1000°C[5-6]. The reaction temperature is lower than the 1100°C for synthesizing YAG powders from Al$_2$O$_3$-Y$_2$O$_3$ composite powders, because ZrB$_2$ particles are changed electrically during the entire sintering process, which produces a plasma among ZrB$_2$ particles to purify the nearby particle surfaces and increase the sintering activity.

However, the Z-axis displacement for powders with YAG-Al$_2$O$_3$ added shows a lower shrinkage displacement below 1000°C, a larger shrinkage displacement is shown from 1000°C to 1600°C, the Z-axis displacement is not varied basically above 1700°C. The Z-axis displacement adding the different powders both show the same shrinkage state from 1000°C to 1600°C, YAG melts above 1000°C, the temperature is lowered because of the action of the plasma. Because the results of the two routes both show the Z-axis displacement is not varied basically above 1700°C, a sintering temperature of 1700°C is choosen for preparing high density ZrB$_2$-YAG-Al$_2$O$_3$ multiphase ceramics (Fig.2). The microstructure of ZrB$_2$-YAG-Al$_2$O$_3$ multiphase ceramics are shown in Fig.3, which indicates the density of ZrB$_2$-YAG-Al$_2$O$_3$ ceramics with Al$_2$O$_3$-Y$_2$O$_3$ composite powder coated is higer than that of ZrB$_2$-YAG-Al$_2$O$_3$ ceramics with YAG-Al$_2$O$_3$ powder mixed (Fig.3-a, b). The reinforced phase of ZrB$_2$-YAG-Al$_2$O$_3$ ceramics with Al$_2$O$_3$-Y$_2$O$_3$ composite powder coated is
shown on the grain boundary (Fig.3-c), however, the reinforced phase of ZrB2-YAG-Al2O3 ceramics with YAG-Al2O3 composite powder mixed is shown among the crystal grain (Fig.3-d).

![Fig.2 XRD of ZrB2-YAG-Al2O3 ceramics with Al2O3-Y2O3 composite powder coated](image)

Fig.2 XRD of ZrB2-YAG-Al2O3 ceramics with Al2O3-Y2O3 composite powder coated

![Fig.3 SEM of ZrB2-YAG-Al2O3 ceramics (a, c-Coated powders, b, d-Mixed powders)](image)

Fig.3 SEM of ZrB2-YAG-Al2O3 ceramics (a, c-Coated powders, b, d-Mixed powders)

![Fig.4 Effect of sintering temperature on Young’s modulus and fracture toughness of ceramics](image)

Fig.4 Effect of sintering temperature on Young’s modulus and fracture toughness of ceramics

The mechanical properties of prepared ceramics under the 20MPa sintering pressure and 4min holding time are shown in Fig.4 and Fig.5, which indicates the mechanical properties are increased with an increasing sintering temperature, and the increasing ratio of mechanical properties is faster at sintering temperature from 1300°C to 1700°C. Because the main desifacation process is produced through the sintering temperature range, the density of ceramics is increased mainly, the Young’s modulus and the fracture toughness are 421.8 GPa and 12.23 MPam1/2, respectively. When the
sintering temperature is overed 1700°C, the Young’s modulus and the fracture toughness are increased less, the sintering temperature is decised at 1700°C.

![Fig.5 Effect of sintering temperature on hardness of ceramics](image)

Conclusion

Through the all results and discussions, the conclusions are the 80wt%ZrB2-YAG-Al2O3 multiphase ceramic materials posing different composite raw materials with the spark plasma sintering technique were successfully prepared. The mechanical properties of prepared ceramics under the 20MPa sintering pressure and 4min holding time are shown, which indicates the mechanical properties are increased with increasing sintering temperature, and the increasing ratio of mechanical properties is faster at sintering temperature from 1300°C to 1700°C. When the sintering conditions is 1700°C, 20 MPa and 4 minutes, the Young’s modulus and the fracture toughness are 421.8 GPa and 12.23 MPam^{1/2}, respectively. The reinforced phase (YAG-Al2O3) is coated on the surface of ZrB2 crystal, that is to say, the YAG-Al2O3 is show on the crystal boundary, which is help for the densification and the mechanical properties.

Acknowledgements

The authors are thankful for the financial support provide by The Natural Science Foundation of Jiangxi Province, China (2014BAB216023), the Key Subjects Construction Program for the Materials Processing Engineering of Jiangxi Province during the 12th Five-Year Plan Period, the Science and Technology Found of Educational Department of Jiangxi Province, China (KJLD12096) and the Science and Technology Foundation of Jiujiang University, China (2014KJZD004).

References

