Paleogene Strata Characteristics of Source-reservoir-cap Combination in Haibei Sub-sag

Shuhui Dai¹,ᵃ Dameng Liu¹,ᵇ Yan Liu¹,ᶜ Xiaoling Liu²,ᵈ

¹School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China; ²China Petroleum Engineering & Construction Corporation EastChina Design Branch, Qingdao 266000, China.

ᵃdsh0546@163.com,ᵇdmliu@cugb.edu.cn,ᶜliuyan_mm@163.com,ᵈliuxiaoling@cnpccei.cn

Keywords: Haibei sub-sag, Paleogene strata, Source-reservoir-caprock combination.

Abstract. Based on the geochemical test and on the basis of core test and analysis, this article carries out the work of hydrocarbon source rock evaluation and reservoir evaluation in Haibei sub-sag Paleogene strata. Studies suggest that the study area has good organic type, high abundance of organic matter and a potential of hydrocarbon generation, good conditions for the development of reservoir and stable regional cap rocks distribution, good source-reservoir-caprock’s spatial arrangement and efficiency high expelling-accumulation. According to their relative position and reservoir formation characteristics, formed five sets of source-reservoir-caprock combinations, and the two main types are upper source rocks and lower oil reservoirs, lower source rocks and upper oil reservoirs.

1. Regional Geological Background

Haibei sub-sag is located in the southwest of Hai’an sag in Subei basin. Hai’an sag developed in the Late Cretaceous, with an area of about 3500 km², and it is a dustpan-like rift lake basin of Cenozoic era under the influence of regional tension filed, and the basin is north fracture and south overlap[¹]. It has developed fracture and fractured structural in the region, formed a strong segmentation pattern of one uplift and seven sags, leaded to oil and gas resources plane distribution more dispersed, and oil reservoir scale is small(Fig. 1). The thickness of Paleogene strata of Hai’an sag is more than 5000m, mainly terrigenous clastic deposits, bottom-up developed Paleogene Paleocene E₁t, E₁f, and Eocene E₂d, E₂s, missing Paleogene Oligocene[²,³].

Fig.1 Division of structural unit in Hai’an Sag
2. Source-reservoir-cap Combination

2.1 Source Rock.

All the three sets of source rocks are deep lake subfacies sediment, the lithology is mainly the darkgrey mudstone, has high abundance of organic matter, maturation and widely distributed. The high effective source rocks from E1f2 are mostly developed in the middle to lower part of E1f2, which are mainly made of type I kerogen, the average organic carbon abundance is 1.65%, the potential for hydrocarbon production(S1+S2) is 6.8mg/g etc(Table.1), which belongs to the good hydrocarbon source rock. The high effective source rocks from E1t2 are mostly developed in the bottom of E1t2, which are mainly made of type I kerogen and type II kerogen(Table.1). The thickness of source rocks are around 25~40m, distributed with sag-wide oil-bearing depressions. The deep sag part of E1f4 has development of dark mudstone, which has high burial depth and great hydrocarbon potential(Table.1).

Table 1 Paleogene strata Organic matter abundance statistical table and Kerogen microscopic identification results

<table>
<thead>
<tr>
<th>Strata</th>
<th>Thickness (m)</th>
<th>Organic carbon (%)</th>
<th>Chloroform bitumen“A” (%)</th>
<th>Total hydrocarbon content (%)</th>
<th>S1+S2 (mg/g)</th>
<th>Organic matter type</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1f4</td>
<td>10~35</td>
<td>0.95</td>
<td>0.0296</td>
<td>46.9</td>
<td>1.98</td>
<td>II + II₂</td>
</tr>
<tr>
<td>E1f2</td>
<td>150~250</td>
<td>1.65</td>
<td>0.1881</td>
<td>55.1</td>
<td>6.80</td>
<td>I + II₁</td>
</tr>
<tr>
<td>E1t2</td>
<td>25~40</td>
<td>2.94</td>
<td>0.1802</td>
<td>59.7</td>
<td>17.4</td>
<td>I + II₁₂</td>
</tr>
</tbody>
</table>

2.2 Reservoir Characteristics.

On the whole, the reservoir space of Paleogene system formation sandstone reservoir is mainly intergranular pore, including primary intergranular pore and intergranular dissolved pore, primary intergranular pore gradually decreased with the increased deep , and secondary solution pores increased conversely,reservoir physical property is dual controlled by the primitive sedimentation and diagenesis. According to the core sample test and analysis results(Table.2), the porosity of reservoir sand mainly distributed in 10.2%~28.9%, the permeability mainly ranges in 1.78~778×10⁻³μm². The reservoir properties is better.
Table 2 Paleogene reservoir rocks general properties in Haibei Sub-sag

<table>
<thead>
<tr>
<th>Strata</th>
<th>Depth (m)</th>
<th>sample numbers</th>
<th>Density (g/cm3)</th>
<th>Por (％)</th>
<th>Perm ($\times 10^{-3}$μm2)</th>
<th>Sw (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E$_1$f$_1$</td>
<td>2700~3000</td>
<td>5</td>
<td>2.12</td>
<td>4.1~22.3</td>
<td>0.02~193</td>
<td>11.7~87.2</td>
</tr>
<tr>
<td>E$_2$d</td>
<td>2850~2950</td>
<td>10</td>
<td>2.09</td>
<td>11.8~28.9</td>
<td>1.78~778</td>
<td>54.1~64.3</td>
</tr>
<tr>
<td>E$_1$f$_2$</td>
<td>2400~2600</td>
<td>63</td>
<td>2.11</td>
<td>10.2~28.4</td>
<td>0.08~230</td>
<td>5.3~85.1</td>
</tr>
<tr>
<td>E$_1$f$_3$</td>
<td>3400~3700</td>
<td>99</td>
<td>2.17</td>
<td>4.0~27.2</td>
<td>0.02~214</td>
<td>13.1~85.5</td>
</tr>
<tr>
<td>E$_1$t$_1$</td>
<td>2400~3300</td>
<td>6</td>
<td>2.38</td>
<td>6.1~14.3</td>
<td>0.1~0.32</td>
<td>22.5~36.2</td>
</tr>
<tr>
<td>E$_1$t$_2$</td>
<td>3000~3300</td>
<td>4</td>
<td>2.48</td>
<td>7.3~8.3</td>
<td>0.05~0.13</td>
<td>48.9~76.6</td>
</tr>
</tbody>
</table>

E$_1$f$_3$: As the main reservoir in this area, it buried in depth of 2400~3700 m, which can be divided into two sets of sands formation. Rock types are mainly lithic arkose, followed by feldspar lithic sandstone. The diagenesis is mainly cementation, dissolution and metasomatism. Siliceous cementation is more common, mainly for quartz overgrowth cementation and pore filling cementing (Fig.3a, Fig.3b). Dissolution is very development, and improves the permeability of the reservoir (Fig.3c). Common metasomatism is calcite metasomatism of clay minerals and clay mineral metasomatism of feldspar (Fig.3d).

E$_2$d: The lithology is mainly sandy coarse grained lithic feldspathic sandstone, and the phenomenon of quartz and feldspar overgrowth are more common (Fig.3e), porosity includes intergranular dissolved pore, and has good connectivity (Fig.3f). According to core samples of test and analysis results of two wells, the physical property of E$_2$d reservoir is better in the region.

E$_1$t$_1$: The lithology is mainly the seriate feldspar lithic sandstone, calcite Dolomite cementation metasomatism particles, and the pore mainly includes intergranular dissolved pore, a small amount of dissolved inter-grain pores and kaolinite intercrystalline pore, so connectivity is poor (Fig.3g, Fig.3h).

Fig.3 Paleogene reservoir SEM and casting thin sections test in Haibei Sub-sag
a. Quartz increase cementation; b. Calcite metasomatic particle and filling pore(plane polarized light); c. Feldspar leaching; d. Calcite metasomatic particle and filling pore (orthogonal polarization light); e. Quartz and feldspar secondary enlargement (orthogonal polarization light); f. Dissolved pores between grains (plane polarized light); g. Quartz and feldspar secondary enlargement (plane polarized light); h. Dissolved pores between grains (orthogonal polarization light).

2.3 Regional Cap rocks.
The extensively developed regional cap rock of Haibei Sub-sag mainly includes: (1)Highstand system track of E$_1$t$_2$, mudstone thickness of 40~150m, widespread, is well regional cap rock of E$_1$t$_1$ reservoir; (2)Lacustrine transgressive system tracts of E$_1$f$_2$, stably developed, mudstone thickness of 100m~500m; (3)Because of denudation, E$_1$f$_4$ Mainly distributed in Hai’an area; (4)Lacustrine
transgressive system tracts of E₂s, mudstone thickness more than 800m, can form effective cover to all the overlying stratum.

The above-mentioned stratum is mainly deep-water sedimentary environment, with great thickness mudstone, strong spreading ability and good sealing ability, it can provide good barrier condition to oil-gas accumulation. Besides, the stable mudstone section formed in the period of water-transgression of E₂d, it can be the local seal to form block to sand body of E₂d.

3. Oil and Gas Migration and Source-reservoir-cap Combination

Several sets of source-reservoir-cap combinations have been developed in Haibei sub-sag, Hai’an sag, according to their relative position and reservoir forming characteristics, they can be divided into two main types and five kinds of source-reservoir-cap combination modes (Fig. 4):

(1) Lower source rocks and upper gas-oil reservoirs:
 1. Regarding the source-reservoir-cap combination of E₁t₂ dark mudstone as source bed, oil and gas migrant upward through fault, the lower part of E₁f₁ sand body as oil reservoir and the upper of E₁f₁ and E₁f₂ mudstone as caprock, forming structural reservoir.
 2. E₁f₂ and E₁f₄ dark mudstone are source bed which are controlled by lithology and fault, then they migrant upward through fault and unconformity, forming reservoirs within E₁f₃ delta sandstone reservoir because of sheltering from E₁f₁ and E₁f₄ mudstone.
 3. E₁f₂ and E₁f₄ dark mudstone are source bed, oil and gas migrated upward along fault, forming lithology-structural oil reservoirs within E₂d and E₂s₁ delta sandstone because of sheltering from E₂s mudstone caprock. During accumulation process, E₁f₄ and E₂d mudstone will affect the migration and accumulation of oil and gas as local regional caprocks.

(2) Upper source rocks and lower gas-oil reservoirs:
 4. E₁t₂ dark marlstone is both source bed and cap rock, oil source migrated downward through fault to E₁t₁ delta front sand body reservoirs. E₁t₂ lake transgression mudstone is both source bed and high-quality regional cap rock of underlying E₁t₁ reservoir, this section’s source-reservoir-cap combination is well matched, expulsion-accumulation efficiency is high.
 5. E₂f₂ oil source migrated down to E₁f₁ shallow lake sandbar reservoir through faults, E₁f₂ lake transgression mudstone is both source bed and high-quality regional cap of underlying E₁f₁ reservoir, it forms good combination of upper source rocks and lower oil reservoirs.

Fig. 4 Pool-forming pattern of Palogene formation in Haibei Sub-sag
4. Summary

(1) The main source rock in Haibei sub-sag Paleogene strata is E1f2, followed by E1t2, the two sets of source rocks are good organic types and high abundance of organic material. The two sets of source rocks have the ability to expelling hydrocarbon upward to overlying strata and downward to underlying strata, under the communication of oil source fault.

(2) The reservoir section of Paleogene strata in research area are E1t1, E1f3, E2d, E1s1, E1f3, E2d are the main reservoir section, the reservoir rock types are mainly debris-feldspar in every section, followed by feldspathic lithic sandstone, the diagenesis types are mainly cementation, dissolution, and recrystallization. The physical property characteristics are low-medium porosity, specific low-low permeability reservoirs.

(3) There are two types of source-reservoir-cap combination developed in Haibei Sub-sag, which are upper source lower reservoir and lower source upper reservoir, the type of upper source lower reservoir is the oil sources of E1t2, E1f2, E1f4 respectively through the fault and makes downward migration to the corresponding underlying reservoir, such as E1t1 and E1f3. The type of lower source upper reservoir is the oil sources of E1f2 and E1f4 through the fault and makes upward migration to the overlying reservoir, such as E1f3, E2d and E2s.

References

