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Abstract. A robust optimization model of resource-constrained critical chain project scheduling 
problem is introduced. Stochastic programming method is used to describe the uncertainty of activity 
duration. Based on the traditional critical chain project scheduling mode, a genetic algorithm is 
introduced, and steps of solving proposed model for RCPSP problem with stochastic activity 
durations are designed. An actual project is applied to explain the robust optimization model and the 
proposed genetic algorithm. The numeric experiment showed that the method designed in this paper 
is robust to deal with activity duration uncertainties. 

Introduction 

Resource-constrained project scheduling problem (RCPSP) widely exists in construction 
engineering, software development, aircraft and ship building and other small batch production 
enterprises. The research on it has a significant practical value. In theory, RCPSP is mostly NP-hard 
problem and difficult to solve. It has attracted attention of many researchers[1,2]. 

In recent years, many studies on RCPSP are based on a premise that activity duration is 
determined. That condition aimed at constructing a baseline schedule for raw material procurement, 
equipment maintenance and order processing activities[3]. However, these projects are often executed 
under resource constraints (e.g., limited number of workers), and uncertainty (e.g., uncertain 
productivity of workers, bad weather, man-made or natural disasters etc.)[4]. Nowadays, the demand 
to finish a project in a shorter time is increasing. Hence, project managers strongly need an effective 
method that considers resource constraints and uncertainty for project scheduling, and provides a 
systematic mechanism for managing schedule during project execution. 

Goldratt introduced the critical chain project management (CCPM) method which is based on the 
probability theory[5-6]. CCPM uses a deterministic schedule integrated by a buffer mechanism to deal 
with both resource constraints and uncertainty. However, many projects in practice have to face a 
relatively high degree of uncertainty factors, such as accidents or man-made disasters. Many 
unknown events may result in the useless of the critical chain made before. So this paper introduces 
how to use the robust optimization algorithm to improve the critical chain when facing the 
uncertainty.  

This paper firstly presents the mathematical model of RCPSP, and some solutions for stochastic 
task durations are introduced. Then a mathematical robust optimization model is deducted for the 
RCPSP with stochastic task durations. Genetic algorithm is designed to solve the proposed model. At 
last, numerical experiments using the model and algorithm before are presented to verify and 
analysis. 
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Problem statement 

Classic RCPSP problem involves a project network  ,G N A , N is project set, A is immediate 

predecessors set between each project. For the basic PCPSP problem, some assumptions are made as 
follows: 
1. Consider “finish-start” (FS) type of precedence relation only, that is to say that activity j may just 

be started immediately when activity i is concluded. There is no delay, feedback and circulation. 
2. Consider renewable resources only. That means activities consume resources at each time that 

are provided in limited quantities. But the total supply don’t gradually consumed as the project 
progressed. 

3. The activities cannot be interrupted once they are started. 
The symbols of RCPSP model used are shown in the following table: 

Table 1 the symbols of RCPSP model 
symbol  instruction 

j 
Activity number, j = 1, 2, …, J; Where J is the total number of activities 
contained in the project 

t Time number, t = 1, 2, …, T; Where T is upper limit of activities duration. 

k Resource number, k = 1, 2, …, K; Where K is number of renewable species 
needed by activities. 

T Total time of the project 
 d j    Duration of activity j 

Fj    Immediate predecessors set of activity j 

S j    immediate successors set of activity j 

sT j    Start time of activity j 

Tj    Complete time of activity j 

It    Set of executing activities at time t 

Rk    The supply of resources k, at any time, the total supply needed by activities 
cannot exceed kR  

PB    Project buffer time 

jkr    Each time the resources needed by activity j 

 
The basic RCPSP problem can be described as:  
  min BT P   (1) 
s.t. 
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Where, Eq. 1 means the objective function to minimize total project time limit for a project, Eq. 2 
means the length of the critical chain, thus the total project duration. BP  is determined by the root of 

variance by Eq. 5[7]. j
 is the variance of activity j in the scene  . Eq. 3 means immediate 

predecessors relation, Eq. 4 means resources limitation. In the classic RCPSP problem, the duration 
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of activity  d j  is often treated as constant. However, in the real project management situation, it 

has been recognized that the majority of the activity duration is a variable and obey some probability 
distribution. According to statistical data and historical experience, we can estimate the probability of 
the uncertainty activity duration. Activity duration is often a random variable between the minimum 
duration and maximum duration, which can be described by a discrete probability model. For any 
activity S∈N, its duration discrete probability model can be described as formula below[8]: 
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The probability of complete time of activity j with duration ( )it S  is ( )iP S , J is the total number 

of activities contained in the project. 

But in the high degree of uncertainty environment, project buffer time PB  may not enough. The 

critical chain made before may be broken. The change of activity duration time or broken of critical 
chain would lead the whole project not stable. So it is necessary to rebuild the model above with 
robust optimization algorithm. 

Robust project scheduling optimization model 

Scene set  1, 2, ,  K is introduced to describe uncertainty activity duration. Assuming that 

for the scene  , suppose there are J activities, and the activity is independent of each other. jd  is the 

duration of activity j in the scene  , vector  1 2, , Jd d d d    L  is activities vector consist of all 

activity durations in this scene. In each scene  , the probability of total duration of this activities 
vector as follows: 
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So the complete time of project T depends not only on the current activities scene vector d , but 

also depends on the scheduling scheme of the project. The duration time is also depends on the 
scheduling scheme. It is possible to establish the following stochastic programming (SP) model: 

SP: 

   1
min E D







    (8) 

s.t. 
 , , ,h j j jT T d h F j          (9) 

 , ,
t

jk k
j I

r R k t


    (10) 

 ( )2

B j
j J

P 
∈

= ∑   (11) 

Where D  is total duration time of activity in the scene   : 
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The stochastic programming above minimizes the total duration time. To further expand the 
stochastic programming model, we using robust optimization theory[9-10], then construct the 
following RCPSP robust optimization (RO) model: 

RO: 
      min Q E V       (13) 
s.t. 
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Where   is weight coefficient of the model,  V   is variance of duration time: 

     21
V D E



  


 
    (17) 

As for robust optimization model, we can introduce error term. A small amount to break through 
the constraint conditions can be tolerated. Because project scheduling scheme   in this paper uses 
the expression of activity list. A feasible project scheduling scheme corresponding activity list in all 
scenarios should also be workable. As for the stochastic programming robust optimization model, 
there is no error term. Instead, we can use the degree of closeness between calculate solutions in the 
different senses with the optimal solution, means the quality robustness of solutions. The variance of 
duration time is used in this work to evaluate quality of algorithm[11]. 

From the perspective of a single activity, the duration of activity j in all scenarios can approximate 
fitting arbitrary probability distribution. We can estimate the probability distribution by using 
historical data and people’s experience. So that RCPSP robust optimization model has the 
universality and superiority. 

Robust Optimization Genetic Algorithm 

For the robust optimization model of RCPSP with stochastic activity durations, usually we can get 
  scenarios in advance, which is part of the whole scenarios. But we also can estimate the whole 
scenarios based on that. In this paper, we use genetic algorithm to solve the robust optimization 
model of RCPSP by small scene samples. 

Coding Scheme. Genetic algorithm[12] has been widely applied to solve RCPSP problem. Coding 
is the most important issue when using genetic algorithms, and also a key step in genetic algorithm 
design, the purpose of this step is to generate activity scheduling. Generally adopt the activity list to 
encode chromosome, and decode by serial schedule generation scheme. That can ensure the solutions 
meet the limitations of precedence and resources at the same time[13]. In this paper, we use activity list 
as encoding plan. 

Fitness function. Fitness function is also referred to as evaluation function. It is used to find the 
better from the groups according to the objective function. It’s the driving force of the evolution 
process, and also the only basis for natural selection. The objective function of original RCPSP 
problem is to minimize total activity duration time. So for stochastic programming model and robust 
optimization model, the fitness functions designed as follow: 
SP: 

    
1

f V
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   (18) 
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Where  f V is the fitness value of individual V. That means in   scenarios, the lower the 

objective function value, the higher the fitness of individuals. 
Select operation. Use the roulette wheel method to select individual from the population. 

Winning probability of each individual  P V  is directly proportional to its fitness value: 

    
 

f V
P V

f V



  (20) 

Crossover operation. Crossover operation is to simulate the process of natural evolution, by 
mating two homologous chromosomes form new chromosome recombination, new species or 
individual process. This paper adopts the single point crossover operator. Crossover probability is cp . 

Two individuals participate in the crossover operation, one is called mother MV , the other is called 

father FV . Daughter DV  and son SV  are generated by crossover operation. The first j genes of 

daughter DV  inherit from mother MV ; and position j+1 to J come from father FV , the existing activity 

in DV  is no longer considered, And keep the relative position of each activity in FV . SV  can be 
obtained by the same way. 

Mutation probability. Every time switched on a chromosome mutation, mutation probability 
is mp . Switched variation means exchange two activities in the activity list; if switched variation 
breaks the precedence relation constraint, and then cancel it. 

Steps of Algorithm. The specific algorithm steps are as follows: 
1) Read all scenarios sample data, and set the genetic algorithm parameters. 
2) According to the selected task precedence rules generating initial population, based on Eq. 18 or 

Eq. 19 to calculate the value of each individual. 
3) Chose the individual according to Eq. 20; doing crossover operation with probability cp , and 

variation Operation with probability mp . 
4) Repeat step 3 until a new generation of population. 
5) According to the Eq. 18 or Eq. 19, Calculate the fitness value of each individual in the current 

population, retain and record the best one. 
6) If the number of iterations reaches a predetermined number of generations, then go to step 7, 

otherwise, the number of iterations add 1, and return to step 3. 
7) Output the best individual, the robust solution of project scheduling problem; terminate the 

program. 

Numerical example  

As an example, we consider a project with 10 activities[13]. The data of each activity and the 
relationship between activities are shown in Table 2. The total availability of resource is 30 workers 
per day. 

Table 2 Data and results for activities in the sample project 
number  1 2 3 4 5 6 7 8 9 10 
Days 5 3 4.5 6 3 4 6.5 8.5 5 7 

probability 0.3 0.4 0.5 0.2 0.3 0.1 0.3 0.2 0.5 0.1 
Immediate 
predecessor 

- 1 1，2 2 3，2 5 2，3 3，6 7，8 5，9 

jkr  80 120 65 70 85 40 20 50 100 30 

When the activity duration time is determined, we use traditional critical chain project 
management (CCPM) method to calculate the whole project time. Schedule duration is 25d. Project 
buffer time is 4.5d. So the final project time is 29.5d. 
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Next, we suppose that there are uncertainty with activity duration time, and the probability of each 
activity as shown in the table 2.  At the best situation, the result is 26.5d including the buffer time. 
When face the worst situation, the result is 41.5d. The fluctuation range of the duration is large with 
poor robustness. Therefore, if we make other decision based on that result, the risk also increases. 

According to the design method in this paper, this project has 10 activities, so 10J = . 30 scenarios 
are randomly selected as actual scenarios project collection from whole scenarios. Then 10 scenarios 
are randomly selected as the small sample for solving, 10  . 

Then using robust optimization model, applied the genetic algorithm for solving. Set the 
population size is 100, generations of 50, crossover probability 0.5cp  , the mutation 

probability 0.15mp  . Assuming that 1  , genetic algorithm uses crossover operation and mutation 
operation to update the population gradually, make project scheduling solution delay variance 
gradually reduced in all scenarios. A better scheduling scheme is obtained finally. After calculation, 

the expectation duration time  E  of this schedule plan under small sample  10  is 27.5d 

without project buffer time. And the variance of duration time  V   is 3.2d.  

Although the total duration of the project with robust optimization model obtained is increased to 
27.5d, bigger than the result from situation of duration determined. But the variance of duration time 
is only 3.2d, it means fluctuation range greatly reduced, the risk is also reduced. 

Gradually adjust the model weighting factor . A number of different scheduling schemes can be 

obtained. The variety of  E  and  V  of those scheduling schemes in the whole scenarios shown 

as follow: 
Table 3 Impact of model weighting coefficient on solutions 

    E     V   

0 27.15 4.10 
0.1 27.36 3.35 
0.5 27.40 3.28 
1 27.50 3.20 

From the table 3 we can see, with the increase of  ,  E   is increasing, but the  V   is 

decreasing. This suggests that the project makers can chose different project scheduling schemes by 
adjusting the weights. If choosing smaller weight coefficient, we can get a smaller duration time 

 E  of project scheduling schemes, but the variance is larger, that means there exist a higher risk. If 

we set 0  , it actually becomes stochastic programming model, the variance of this project 
scheduling scheme is the largest. If we chose a bigger weight coefficient, the deferred expectation 
wills slightly increasing, but the variance gradually reduces, that means effective inhibition of project 
risk. Therefore, project makers can choose the appropriate weighting coefficient to generate a 
suitable project scheduling scheme according to the risk preference. 

Conclusion 

In the project practice, the activity duration uncertainty brought inconvenience for project 
scheduling. Robust scheduling scheme proposed in this paper can be solved by robust optimization 
model with small sample scenarios. Project makers can also weigh between the feasible solution and 
the optimal solution by controlling the weight coefficient. In a follow-up study can consider other 
schedule expression to design the robust optimization model, make the robust solution close to the 
optimal solution under different scenarios better. At the same time, we can improve genetic algorithm 
or adopt other effective intelligent algorithm, in order to increase the efficiency of solving the robust 
optimization model. 
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