Growth and Characteristics of SnO$_2$/Ag/Nb$_2$O$_5$/SiO$_2$/SnO$_2$ Multi layer Film

Jin-Gyun Kim and Gun-Eik Jang*
Department of Materials Engineering, Chungbuk National University, Cheongju 361-763, Korea
*Corresponding author

Abstract—Transparent conducting films having a hybrid structure of SnO$_2$/Ag/Nb$_2$O$_5$/SiO$_2$/SnO$_2$ were deposited on soda lime glass substrates at room temperature by sequential RF/DC magnetron sputtering method. The physical and optical properties of hybrid multilayer film were systematically investigated as a function of SnO$_2$ layer thickness. In order to estimate the optical characteristics and compare them with experimental results, the simulation program named EMP (Essential Macleod Program) was used. EMP results suggested that the multilayered thin film of SnO$_2$ (45 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (30 nm) exhibited high transmittance of 89.7 % at 550 nm, whereas the experimentally measured transmittance showed 85.8 %, somewhat lower than simulation data. XRD patterns revealed that SnO$_2$ multi layered films were found to be amorphous and the surface roughness maintained a relatively small range about 4 nm.

Keywords—EMP simulation; transmittance; AES depth profiling; surface roughness

I. INTRODUCTION

Flexible transparent conductive oxides (TCOs) with low resistivity and high transmittance are of great technological importance for a wide variety application in optoelectronic, photovoltaic devices and systems such as solar cell, organic light emitting diodes, and liquid crystal displays [1-2]. So far, a number of research projects have been successfully conducted in the area of TCO materials [3-8]. The most common materials with high transmittance are SnO$_2$ [3], In$_2$O$_3$ [4], ZnO [5], TiO$_2$ [6], AZO [7], or Nb$_2$O$_5$ [8]. Recently, oxide/metal/oxide (OMO) tri-layer structures have drawn great attention as TCOs with low sheet resistance, high optical transparency in the visible range and also showed relatively better chemical stability than single-layered metal film [9-15]. However, especially the superior flexibility of OMO multilayer films, which pattern can be directly exposed, poses one of the most critical issues. In order to manage visibility problem effectively, reflectance change, placing the index matching layer with high and low refractive index materials between metal and TCO, could be one of possible solutions in OMO structure. However, none of previous works have been undertaken to study the modification of optical properties through the addition of index matching layers into tri-layer structures.

In the present study, a hybrid structure of SnO$_2$/Ag/SnO$_2$ film with index matching layer has been designed. As an index matching material, SiO$_2$ (n = 1.46) and Nb$_2$O$_5$ (n = 2.34) with low and high refractive index material as well as outstanding thermal stability were selected for this purpose. The overall objective of this research is to systematically evaluate the optical characteristics of SnO$_2$/Ag/Nb$_2$O$_5$/SnO$_2$ multilayer film with different thickness of SnO$_2$. In order to estimate the optical characteristics and compare them with experimental results in advance, the simulation program named EMP (Essential Macleod Program) was adopted.

II. EXPERIMENTAL

A. Simulation

Prior to the experiments, one of the optical programs named Essential Macleod Program (EMP) was adopted to simulate the optical characteristics such as transmittance, reflectance and color in the multi layer thin films. The EMP was processed through the following steps; first, construction parameters such as reflectance and extinction coefficient of SnO$_2$, Ag, Nb$_2$O$_5$, SiO$_2$ and SnO$_2$, respectively, which were calculated by ellipsometry measurement, were input in the program. Second, SnO$_2$/Ag/Nb$_2$O$_5$/SiO$_2$/SnO$_2$ multi layers were designed and simulated with various parameters such as wavelength ranges (380 - 780 nm), thickness (10 - 50 nm) and layers of structure. Finally, analysis on the parameter effect was performed with system modification for optical properties whether it is appropriated for the optimum simulation.

B. Film Preparation

For the purpose of study, SnO$_2$ (40 – 55 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (25 nm) multi layer film with more than about 85 % transmittance was selected after taking a number of simulation by modifying the stacking sequence and adjusting the thickness of each layer. Fig. 1 shows the schematic diagram illustrating the structure of SnO$_2$/Ag/Nb$_2$O$_5$/SiO$_2$/SnO$_2$ multi layer film.

![FIGURE 1. THE SCHEMATIC DIAGRAM ILLUSTRATING THE STRUCTURE OF SnO$_2$/Ag/Nb$_2$O$_5$/SiO$_2$/SnO$_2$ MULTI LAYER FILM](image)

A hybrid structure of SnO$_2$/Ag/Nb$_2$O$_5$/SiO$_2$/SnO$_2$ was deposited on soda lime glass substrates by sequential RF/DC magnetron sputtering at room temperature. Prior to deposition, soda-lime glass (75 × 25 × 1 mm3) was ultrasonically cleaned...
in acetone, ethanol and IPA for 30 min at 50 °C. Thin film layers of SnO₂, SiO₂, and Nb₂O₅ were deposited by RF magnetron sputtering onto soda-lime glass substrates at room temperature. High purity Ar (35 sccm) was introduced into the chamber by mass flow meter with the total pressure maintained at 5.5 mTorr. Ag layer was deposited by DC magnetron sputtering. Total film thickness was about 100 nm. More details about sputtering conditions are given in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputtering</td>
<td>RF, DC</td>
</tr>
<tr>
<td>Target</td>
<td>SnO₂, Nb₂O₅, SnO₂, Ag</td>
</tr>
<tr>
<td>Substrate</td>
<td>glass</td>
</tr>
<tr>
<td>Power</td>
<td>100 W, 10 W</td>
</tr>
<tr>
<td>Base pressure</td>
<td>5 × 10⁻⁵ Torr</td>
</tr>
<tr>
<td>Working pressure</td>
<td>1.1 × 10⁻⁷ Torr</td>
</tr>
<tr>
<td>Temperature</td>
<td>R.T.</td>
</tr>
<tr>
<td>Atmosphere (Ar)</td>
<td>35 sccm</td>
</tr>
</tbody>
</table>

The refractive index n and extinction coefficient k of each monolayer were evaluated using ellipsometer (Elli-SE) in the visible range from 350 to 750 nm with a step with of 5 nm. The surface morphology of the films was investigated by Atomic Force Microscope (AFM) measurements in contact mode. The transmittance and reflectance of the films were estimated using a UV-VIS-NIR spectrophotometer (KONICA-MINOLTA CM-3600d) with a light source of D65. In addition, the interfacial properties of the SnO₂/Ag/Nb₂O₅/SiO₂/SnO₂ electrodes were analyzed using AES depth profiling.

III. RESULTS AND DISCUSSION

A. Optical Properties

To extract an accurate analysis from EMP simulation, the refractive index n and extinction coefficient k are necessary. Fig. 2 represents the measured refractive index n and extinction coefficient k for SiO₂, Nb₂O₅, SnO₂ and Ag thin film in visible range, calculated by using ellipsometry. The obtained refractive indexes of SiO₂, Nb₂O₅, SnO₂ and Ag thin films were 1.52, 2.42, 2.09 and 0.12, respectively, which are somewhat higher than theoretical value. The slightly high value of n is thought to arise from low density and low crystallinity of each film owing to their low processing temperature. Further, the measured extinction coefficients of SiO₂, Nb₂O₅, SnO₂ and Ag are 0.02, 0.0, 0.0 and 2.98, respectively.

Prior to experiments, the optical programs named Essential Macleod Program (EMP) was carried out to simulate the optical characteristics. Fig. 3(a) exhibited the optical simulation results of the transmittance on the SnO₂ (40 – 55 nm)/Ag (10 nm)/Nb₂O₅ (10 nm)/SiO₂ (10 nm)/SnO₂ (20 - 35 nm) multi layer as a function of SnO₂ thickness.

FIGURE II. (A) THE MEASURED REFRACTIVE INDEX N AND (B) EXTINCTION COEFFICIENT K FOR SiO₂, Nb₂O₅, SnO₂ AND Ag THIN FILM IN VISIBLE RANGE

Fig. 3(b) shows the experimentally measured transmittance of the SnO₂/Ag/Nb₂O₅/SiO₂/SnO₂ multilayer films as a function of the SnO₂ thickness. The transmittance of the SnO₂/Ag/Nb₂O₅/SiO₂/SnO₂ film with the bottom thickness of SiO₂ 30 nm was 85.4 % at 550 nm wavelength. As compared with simulation data, transparency obtained from experimental results was relatively lower than that obtained through simulation for wavelength values above 550 nm. This might be attributed to light scattering on the each layer of film surface and interface instability due to diffusion. Moreover, the substrate temperature was also considered to cause differences between the experimental and EMP simulation results.

FIGURE III. (A) SIMULATED AND (B) EXPERIMENTALLY MEASURED OPTICAL TRANSMITTANCE SPECTRA ON THE SnO₂/Ag/Nb₂O₅/SiO₂/SnO₂ MULTI LAYER FILM AS A FUNCTION OF THICKNESS OF THE TOP AND BOTTOM SnO₂ LAYER

Based on the results taken from Fig. 3, the film thickness of the top SnO₂ layer varied from 40 to 55 nm, whereas the SiO₂,
Nb$_2$O$_5$ and Ag layers were fixed at 10 nm and the bottom SnO$_2$ layer was kept at 30 nm. Fig. 4 demonstrates the transmittance spectra from simulation and experiment taken on the SnO$_2$ (40 – 55 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (30 nm), respectively. As can be seen in simulation spectra of Fig. 4(a), the transmittance gradually decreased with increasing the top SnO$_2$ thickness from 40 to 55 nm. The transmittance of the multilayer films had in the range of 86.3 – 89.7%, high transparency in the visible range of 550 nm. Fig. 4(b) shows the experimentally measured results of the transmittance on the same film. It is noted that the transmittance window narrows and gradually becomes lowered relatively, as compared with simulation results. However, the experimental transmittance of SnO$_2$/Ag/Nb$_2$O$_5$/SiO$_2$/SnO$_2$ thin films was in the range of 84.3 – 85.8% at 550 nm, slightly different regardless of the top SnO$_2$ thickness. It was shown that the SnO$_2$ (45 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (30 nm) film yielded the highest optical transmittance of 85.8% at 550 nm.

FIGURE IV. (A) SIMULATED AND (B) EXPERIMENTALLY MEASURED OPTICAL TRANSMITTANCE SPECTRA ON THE SnO$_2$ (40–55 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (30 nm) MULTI LAYER FILM

B. Phase Identification and Surface Morphology Analysis

Fig. 5 presents the XRD patterns obtained from the SnO$_2$ (40–55 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (30 nm) multi layer film with various SnO$_2$ layer thicknesses. As can be seen, all of the as-deposited multi layer films appear to be amorphous. Regardless of the SnO$_2$ thickness, there is a broad at 26° for all samples that is caused by the glass substrate. This can be attributed to the fact that thin film with about 100 nm thick has a nanocrystalline phase formed during DC/RF sputtering process. Another feature seen in the Fig. 5 is that Ag (111) peaks could be observed around 38.2 after deposition Ag on SnO$_2$ / SiO$_2$/ Nb$_2$O$_5$ multi layer film.

FIGURE V. XRD PATTERNS OBTAINED FROM THE SnO$_2$ (40 – 55 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (30 nm) MULTI LAYER FILM WITH VARIOUS SnO$_2$ LAYER THICKNESSES

The surface morphologies of the Ag films as a function of Ag layer thicknesses are shown in Fig. 6. The Ag particles begin to connect to each other and start forming a continuous path at the thickness of around 10 nm. It was known that the total resistivity of the multi layer film is mainly determined by Ag layer, since the resistivity of Ag is much lower than that of SnO$_2$.

FIGURE VI. SURFACE MORPHOLOGIES OF THE AG FILMS AS A FUNCTION OF AG LAYER THICKNESS

Fig. 7 shows the surface roughness of the deposited films was investigated using AFM. Measurement has been taken on 5 different multi layer films continuously deposited, (a) SnO$_2$ (45 nm), (b) SnO$_2$ (45 nm)/Ag (10 nm), (c) SnO$_2$ (45 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm), (d) SnO$_2$ (45 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm) and (e) SnO$_2$ (45 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (30 nm). It can be seen that the surface roughness of the SnO$_2$ (45 nm)/Ag (10 nm)/Nb$_2$O$_5$ (10 nm)/SiO$_2$ (10 nm)/SnO$_2$ (30 nm) film in Fig. 7 was related to that of the underlying index matching layer. As seen in Fig. 7, the roughness increased after SnO$_2$ layer was deposited. However, surface roughness maintained are relatively small in the range of 4.0 nm, after deposition of Nb$_2$O$_3$ and SiO$_2$ index matching layers.
SnO\textsubscript{2} thickness. The measured transmittance suggested that the transmittance and transmittance were dependent on the varying the SnO\textsubscript{2} thicknesses were systematically investigated.

In order to estimate the optical characteristics and compare them with experimental results, EMP was adopted and the interface between each layers was not well defined, indicating there was a possible interfacial reaction between layers.

V. ACKNOWLEDGEMENT

This work was supported by Industrial Technology Innovation Program funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) (No. 10040000-10048659)

VI. REFERENCES

