The Analysis of Change Region in Business Process Based on the Degree of Similarity in Structural

Fang Zhao\(^1, a^*\), Xianwen Fang\(^1, b\), Xiangwei Liu\(^1, c\) and Huan Fang\(^1, d\)

\(^1\)School of Science, Anhui University of Science and Technology, Huainan Anhui, 232001, China

\(^a\)1012377428@qq.com, \(^b\)280060673@qq.com, \(^c\)lxw7710@tom.com, \(^d\)fanghuan0307@163.com

Keywords: Business process; Behavioral profiles; The degree of similarity in structural; The change region.

Abstract: In the modeling of business process, the similarity of the process model and the change region of it are two important problems. The existing method mainly from the angle of the behavior to consider the degree of similarity, so there has some limitations in studying the similarity of the models. To study the similarity of the source and target models, we put forward the degree of similarity in structural on the basis of the behavioral profiles. Then use the concrete examples and algorithm to obtain the degree of similarity in structural. In the end, we use the existing method to determine the change region of the target model.

Introduction

With the extensive development of the business process models, various companies constructed many different models basing on different purpose. In order to describe the same characteristic of these models, some scholars are studying the consistency and the behavior similarity of the models.

[1] described the effect in trace equivalent and the equivalent of behavioral profiles in judging the consistency of the models, the trace equivalent is much strict than the equivalent of behavioral profiles, but the effect of the consistency degree is the opposite. [2] used the concept of the behavioral profiles to describe the characteristic of the behavior and set up the diagram of the behavioral relation hierarchy and a consistent behavioral profile. [3] analyzed the process model basing on the Petri nets and the thoughts of the behavioral profiles, obtained the change region and the smallest change region. [4, 5] introduced the similarity of the behavior to quantify the similarity of the process.

These are all from the perspective of the consistency and the behavior to analysis the similarity of the models, and then obtain the degree of similarity between the models. In this paper, we base on the structural of the Petri nets, through the transitions of the structural graph in the source model to analysis them in the target model.

Organization of the Text

Motivation for the instance. Fig. 1 and Fig. 2 give us instances of the purchase process in the companies.
The basic definition. This part mainly introduces some necessary definitions, as to the Petri nets of process models, the weak order relation and the behavioral profiles please refer to reference [1].

Definition 1 (The occupancy of the predecessor transition) Let $N_1 = (P_1, T_1, F_1)$ be a Petri net of a source model, $N_2 = (P_2, T_2, F_2)$ be a Petri net of a target model, $T_1 = \{t_1, t_2, \ldots, t_n\}, T_2 = \{t'_1, t'_2, \ldots, t'_m\}$. For any $t_i \in T_1$, $\forall t_j \in T_2$ there exist $t_i \in T_1$, $\forall t_i \in T_1$, $\forall t_j \in T_2$, we use $p[t_i]$ to denote the occur probability of t_i under the condition of known, we call it the occupancy of the predecessor transition. It should satisfy the following ones:

1. If $\bigvee_i [t_i] \cap [t_j] = \emptyset$, then $p[t_i] \cap [t_j] = 0$ and $p[t_i] \cup [t_j] = 1$.

2. If $\bigvee_i [t_i] \cap [t_j] \neq \emptyset$ and $\bigvee_i [t_i] \neq [t_j]$, then $p[t_i] \cap [t_j] = \frac{1}{n[t_i]} \cdot \frac{1}{n[t_j]}$ and $p[t_i] \cup [t_j] = 1$, also $p[t_i] \cap [t_j]$ respond the probability of the same element in t_i and t_j can occur at the same time. If the same element in t_i and t_j can’t occur at the same time,
then $p^{\sim}(t_i) \cap \sim(t_j)$ = 0.

(3) If $p^{\sim}(t_i) \cap \sim(t_j)$ and $[\sim(t_i)] \neq [\sim(t_j)]$, then $p^{\sim}(t_i) = \frac{1}{n \sim(t_i)}$, $p^{\sim}(t_j) = \frac{1}{n \sim(t_j)}$, then $p^{\sim}(t_i) \cap \sim(t_j) = 0$.

If $p^{\sim}(t_i) \cap \sim(t_j)$ and $[\sim(t_i)] = [\sim(t_j)]$, then $p^{\sim}(t_i) \cap \sim(t_j) = 1$ and $p^{\sim}(t_i) \cup \sim(t_j) = 1$.

As to the occupancy of the successor transition can be similarly defined.

Definition 2 (The degree of similarity in structural) Let $N_1 = (P_1, T_1, F_1)$ be a Petri net of a source model, $N_2 = (P_2, T_2, F_2)$ be a Petri net of a target model, and $T_1 = \{t_1, t_2, \ldots, t_m\}, T_2 = \{t_1, t_2, \ldots, t_m\}, \forall t_i \in T_2$ there exists $t_i \in T_1$ corresponding to it and including that $i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}$.

(1) The similarity degree of itself: $\text{sim}(t_i, t_j) = \frac{\sum p^{\sim}(t_i) \cap \sim(t_j)}{\sum p^{\sim}(t_i) \cup \sim(t_j)}$.

(2) The similarity degree of the direct predecessor transition:

$$\text{sim}(\sim(t_i), \sim(t_j)) = \frac{\sum p^{\sim}(t_i) \cap \sim(t_j)}{\sum p^{\sim}(t_i) \cup \sim(t_j)}.$$

(3) The similarity degree of the direct successor transition: $\text{sim}(\sim(t_i), \sim(t_j)) = \frac{\sum p^{\sim}(t_i) \cap \sim(t_j)}{\sum p^{\sim}(t_i) \cup \sim(t_j)}$.

Look for the degree of similarity in structure of the source and target models based on the Petri nets. By introducing the basic definition, we can consider the similarity of the source and target models from the angle of structure. So we give the following algorithm:

Algorithm: The degree of similarity in structural of the source and target models.

Input: a Petri net of a source model $N_1 = (P_1, T_1, F_1)$, a Petri net of a target model $N_2 = (P_2, T_2, F_2)$.

Output: The degree of similarity in structural of them, write down as $\text{sim}(N_1, N_2)$.

(1) According to definition 1, we can derive the occupancy of the predecessor transition and the occupancy of the successor transition with the source and target models.

(2) According to definition 2 (1), we can derive the similarity degree of itself with the source and
target models: \(sim(t_i, t_j) = \frac{\sum p[t_i \cap t_j]}{\sum p[t_i \cup t_j]} \).

(3) According to definition 2 (2), we can derive the similarity degree of the direct predecessor transition with them: \(sim^*(t_i, t_j) = \frac{\sum p[t_i^* \cap t_j^*]}{\sum p[t_i^* \cup t_j^*]} \).

(4) According to definition 2 (3), we can derive the similarity degree of the direct successor transition with them: \(sim(t_i^*, t_j^*) = \frac{\sum p[t_i^* \cap t_j^*]}{\sum p[t_i^* \cup t_j^*]} \).

(5) According to these steps, give a weight \(w_1 \) to \(sim(t_i, t_j) \), \(w_2 \) to \(sim^*(t_i, t_j) \), \(w_3 \) to \(sim(t_i^*, t_j^*) \), and \(w_1 + w_2 + w_3 = 1 \).

(6) Then calculate the degree of similarity in structural of them:
\[
sim(N_1, N_2) = w_1 \cdot sim(t_i, t_j) + w_2 \cdot sim^*(t_i, t_j) + w_3 \cdot sim(t_i^*, t_j^*) .
\]

Experimental evaluation. According to Fig. 1 and Fig. 2, we can derive the similarity degree of itself with \(N_1 \) and \(N_2 \):
\[
sim(t_i, t_j) = \frac{29}{32} = 0.906 .
\]

The similarity degree of the direct predecessor transition with \(N_1 \) and \(N_2 \):
\[
sim^*(t_i, t_j) = \frac{17 + \frac{1}{2} \times 3 + \frac{1}{12} \times 3 + \frac{1}{3}}{27 \times 1} = 0.707 .
\]

The similarity degree of the direct successor transition with \(N_1 \) and \(N_2 \):
\[
sim(t_i^*, t_j^*) = \frac{21 + \frac{1}{2} \times 2 + \frac{1}{12} + \frac{1}{3}}{28 \times 1} = 0.801 .
\]

We order \(w_1 = 0.5, w_2 = 0.25 \) and \(w_3 = 0.25 \), then calculate the degree of similarity in structural of the source and target models is:
\[
sim(N_1, N_2) = 0.83 .
\]

Due to the degree of similarity in structural of the source and target models is below 0.85, so there exists change region in the target model. According to Literature [3], we can obtain the change region in the target model is \(\{P_{21}, VP_{22}, WXP_{23}, VP_{24}\} \).
Summary

According to our method, we can know that the degree of similarity in structural of the source and target models is lower than what we have given. So there exists change region in the target model. By the method of predecessors’ research, we obtain the change region.

Acknowledgements

We would like to thank the support of the National Natural Science Foundation of China under Grant No.61272153, No.61402011, No.61340003 and No.61170059, Anhui Provincial Soft Science Foundation (12020503031), the Natural Science Foundation of Educational Government of Anhui Province of China (KJ2012A073, KJ2014A067), Anhui Provincial Natural Science Foundation (1508085MF111), the youth academic backbone foundation of AUST, the Academic and Technology Leader Foundation of Anhui Province.

References