The effect of gap of building on indoor flow field and thermal environment

LI Hao¹,a, ZOU Zhijun, WANG Fei

¹School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China

Email: lh19820818@163.com

Keywords: gap of building, indoor flow field, thermal environment

Abstract: In summer and in winter, the outdoor air will flow in room through the gap of building. Which will influence the indoor flow field and thermal environment and cause draft, the human in room will feel uncomfortable. This paper use the method of numerical simulation to research the effect of outdoor air velocity on gap of building on indoor flow field and thermal environment. The results show indoor flow field and thermal environment will be influenced by outdoor air through the gap obviously. With the increase of outdoor air velocity, it will reach greater range.

Introduction

In every construction, the gap (such as on doors and windows) exists inevitably. It was caused by the assemble deviation of door, window or other part of building. And as time goes on, the gap will become large certainly. In summer and in winter, the outdoor air will flow in room through the gaps of building. Which will influence the indoor flow field and thermal environment and cause draft, the human in room will feel uncomfortable. The purpose of this article is to research the flow field and thermal environment in room on different outdoor air velocity through the gap.

Physical Models

Geometrical Model

Fig.1 is the simulation model of gap in a room. The dimension of room is 5000*3000*2500mm. There is an air inlet (800*200mm), an air outlet (300*300mm) and a gap (1000mm height and 10mm width) in the only outer wall. The other wall, ceiling and floor are inner wall.

Turbulence model

Standard k-epsilon model is used to simulate the indoor thermal environment and air flow field.
The K-epsilon model is one of the most common turbulence models. It is a two equation model, which means, it includes two extra transport equations to represent the turbulent properties of the flow. This allows a two equation model to account for history effects like convection and diffusion of turbulent energy.

The first transported variable is turbulent kinetic energy, k. The second transported variable in this case is the turbulent dissipation, \(\varepsilon \). It is the variable that determines the scale of the turbulence, whereas the first variable, k, determines the energy in the turbulence.

There are two major formulations of K-epsilon models. That of Launder and Sharma is typically called the "Standard" K-epsilon Model. The original impetus for the K-epsilon model was to improve the mixing-length model, as well as to find an alternative to algebraically prescribing turbulent length scales in moderate to high complexity flows.

Transport equations for standard k-epsilon model are followed.

\[
\frac{\partial (\rho \varphi)}{\partial t} + \text{div} (\rho \vec{U} \varphi) = \text{div} (\Gamma_\varphi \text{grad} \varphi) + S
\]

The \(\varphi \) in the equation can be velocity, turbulent kinetic energy, turbulence dissipation rate and temperature. For different equation, the specific form is shown in Tab.1.

Tab.1 The specific form of transport equation

<table>
<thead>
<tr>
<th>Equation</th>
<th>(\varphi)</th>
<th>(\Gamma_\varphi)</th>
<th>(S_\varphi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuity equation</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x-velocity</td>
<td>(u)</td>
<td>(\mu_{\text{eff}} = \mu + \mu_t)</td>
<td>(- \frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu_{\text{eff}} \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu_{\text{eff}} \frac{\partial u}{\partial z} \right))</td>
</tr>
<tr>
<td>y-velocity</td>
<td>(v)</td>
<td>(\mu_{\text{eff}} = \mu + \mu_t)</td>
<td>(- \frac{\partial P}{\partial y} + \frac{\partial}{\partial y} \left(\mu_{\text{eff}} \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu_{\text{eff}} \frac{\partial u}{\partial z} \right))</td>
</tr>
<tr>
<td>z-velocity</td>
<td>(w)</td>
<td>(\mu_{\text{eff}} = \mu + \mu_t)</td>
<td>(- \frac{\partial P}{\partial z} + \frac{\partial}{\partial z} \left(\mu_{\text{eff}} \frac{\partial u}{\partial z} \right))</td>
</tr>
<tr>
<td>turbulent kinetic energy</td>
<td>(k)</td>
<td>(\alpha_k \mu_{\text{eff}})</td>
<td>(G_t + G_B - \rho \varepsilon)</td>
</tr>
<tr>
<td>turbulence dissipation rate</td>
<td>(\varepsilon)</td>
<td>(\alpha_\varepsilon \mu_{\text{eff}})</td>
<td>(C_{\text{ic}} \frac{\varepsilon}{k} (G_t + C_{3c} G_B) - C_{2\varepsilon} \frac{\varepsilon^2}{k} - R_c)</td>
</tr>
<tr>
<td>temperature</td>
<td>(T)</td>
<td>(\frac{\mu}{\text{Pr}} + \frac{\mu_t}{\sigma_r})</td>
<td>(S_T)</td>
</tr>
</tbody>
</table>

Constants in Tab 2.1 are below:

\[
G_k = \mu_s S^2, \quad S = \sqrt{2 S_o S_v}, \quad S_o = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_j} \right), \quad G_B = \beta_T g \frac{\mu_t}{\sigma_T} \frac{\partial T}{\partial y}, \quad \mu_t = \rho C_{\mu} \frac{k^2}{\varepsilon}, \quad C_{\mu} = 0.0845,
\]

\[
C_{\text{ic}} = 1.42, \quad C_{2\varepsilon} = 1.68, \quad C_{3c} = \tanh \left(\frac{v}{\sqrt{u^2 + w^2}} \right), \quad \sigma_r = 0.85, \quad \sigma_c = 0.7
\]

\[
\alpha_k = \alpha_\varepsilon, \text{ calculated by } \frac{\alpha - 1.3929}{\alpha_0}^{0.621} = \frac{\alpha + 2.3929}{\alpha_0 + 2.3929}^{0.3679} = \frac{\mu}{\mu_{\text{eff}}} \]

© 2015. The authors - Published by Atlantis Press

1011
Where $\alpha_0 = 1.0$

If $\mu << \mu_{eff}$, $\alpha_k = \alpha_k \approx 1.393$

$$R_k = \frac{C_p \rho \eta^3 (1 - \eta / \eta_0)}{(1 + \beta \eta^3)} \times \frac{e^2}{k}$$

Where $\eta = Sk/\varepsilon$, $\eta_0 = 4.38$, $\beta = 0.012$

Simulation conditions

There are four conditions have been simulated. The difference is the velocity of outdoor air through the gap. Case 1 is zero, Case 2 is 0.5 m/s, Case 3 is 1 m/s and Case 4 is 2 m/s. In simulation, the parameters of air inlet and all walls are listed in Tab.2. Air outlet was a free boundary; the parameters of it were calculated by simulation.

<table>
<thead>
<tr>
<th>Simulation conditions</th>
<th>Air inlet (m3/h)</th>
<th>Temperature (°C)</th>
<th>Gap Air velocity (m/s)</th>
<th>Temperature (°C)</th>
<th>Ceiling, floor, inner wall and outer wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td></td>
<td>557</td>
<td>0</td>
<td>34.4</td>
<td>thermal insulation</td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td>18</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulation results

Fig.2~Fig.5 shows the variety of velocity on cross section in Case 1 ~ Case 4. Fig.6 shows the velocity in center of room on X direction. The indoor flow field will be influenced by outdoor air through the gap obviously. With the increase of outdoor air velocity, it will reach greater range. In Case 2, when it is 0.5 m/s, the range of influence is 0.5 m. In Case 3, it increases to 1 m distance. In Case 4, it will affect the supply air from air-condition system.

Fig.2 velocity contour on cross section in Case 1
Fig.3 velocity contour on cross section in Case 2
The indoor flow field and thermal environment will be influenced by outdoor air through the gap obviously. With the increase of outdoor air velocity, it will reach greater range.

In the room flow field, in Case 2, the range of influence is 0.5m. In Case 3, it increases to 1m distance. In Case 4, it will affect the supply air from air-condition system.

In thermal environment, the influence range in Case 2~Case 4 is 0.4m, 1.3m and 1.3m. And the temperature will increase correspondingly. The outdoor air velocity increase 2 times, indoor temperature will rise 0.4°C. When it increase 4 times, indoor temperature will rise 1.2°C. Which will influence indoor thermal environment significantly and the more energy consumption will be
need to decrease the temperature. In addition, the larger of gap will result in more energy consumption of air-condition system.

References