The Design of AGC Circuit Based On the Variable Gain Amplifier AD603

Guanghua Feng1,a, Zhengdong Li1,b,*, Qiang Guo1,c, Xin Feng1,d, Zhanle Ma2,e

1Censtor of Simulation and Training, Chongqing Communication Institute, Chongqing, China
2No.61516 of the People’s Liberation Army, Beijing, China
aguanghua@126.com, bgusi@foxmail.com, cguoqiang@foxmail.com, dfengxin@foxmail.com, ezhanle@foxmail.com

* corresponding author

Keywords: communication; AGC; amplifier; gain; frequency

Abstract. AGC, Auto Gain Control, is a very important design module in HF transceiver. AGC makes fearfully important effect on improving receive range of receiver and overcoming near-far effect of wireless link. This paper discusses in detail the idea and method of project design of the AGC circuit, affording actual measurement performance index.

Introduction

When shortwave communication received signal, due to the different changes in the ionosphere and the received signal fading conditions, the antenna input level is varied over a wide range \cite{1}. Thus the output signal intensity of the receiver changes greatly. Meanwhile, the output level of the receiver have largely controlled by the volume potentiometer, so that the design of high frequency (HF) modem input signal level control has become an important aspect of its performance constraints. Therefore, designing HF modem auto generation control (AGC) circuit has become a very important design element. AGC is an important design in the shortwave transceiver, which has a very key role for improving the reception range of the receiver and overcoming the distance effect of wireless link. In the AGC circuit, although the input signal amplitude is large, the amplitude of the output signal remains constant or automatic control circuit in a small range only. The basic principle is to produce an AGC level varies with the input DC voltage AGC, AGC voltage to control the use of certain gain amplifying component, so that the total gain varies according to certain rules \cite{2}.

Currently, there are two main shortwave receiver amplifier gain control methods. One is to change the parameters of the amplifier itself, so that the gain is changed, typically dual gate FET, wherein by changing a DC bias voltage of the gate of the gain changes; the other is inserted between the amplifier stage variable attenuator to control the amount of attenuation, the gain changes, typically various integrated variable gain amplifier, AGC circuit discussed here is the United States the use of AD (Analog Devices) variable gain amplifier AD603’s combination of simple AGC the control circuit to achieve. The input signal can be achieved when 100mv ~ 2500mv change, gain greater than 21dB, AGC dynamic range greater than 30dB, the output signal level basically stable at 310mv.

Chip of AD603

The AD603 is a low noise, voltage-controlled amplifier for use in RF and IF AGC systems \cite{3}. It provides accurate, pin-selectable gains of -11 dB to $+31$ dB with a bandwidth of 90 MHz or $+9$ dB to $51+$ dB with a bandwidth of 9MHz. Any intermediate gain range may be arranged using one external resistor. The input referred noise spectral density is only 1.3nV/√Hz, and power consumption is 125mW at the recommended ±5 V supplies. The decibel gain is linear in dB, accurately calibrated, and stable over temperature and supply. The gain is controlled at a high impedance (50 Ω), low bias (200nA) differential input; the scaling is 25 mV/dB, requiring a gain control voltage of only 1 V to span the central 40 dB of the gain range. An overrange and underrange of 1 dB is provided whatever the selected range. The gain control response time is less than 1 μs for a 40 dB change.

The AD603 functional block diagram is shown in Figure 1.
The AD603 can be used for RF / IF AGC circuit systems, video gain control, A / D range extension and signal measurement system. It provides accurate, pin-selectable gain, when 90 MHz bandwidth, gain range is -11 dB to +31 dB, gain bandwidth of 9 MHz ranges or +9 dB to +51 dB. An external resistor can be used to obtain any intermediate gain range [4].

The AD603 pin functions are shown in Table 1:

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GPOS</td>
<td>Gain Control Input High</td>
</tr>
<tr>
<td>2</td>
<td>GNEG</td>
<td>Gain Control Input Low</td>
</tr>
<tr>
<td>3</td>
<td>VINP</td>
<td>Amplifier Input</td>
</tr>
<tr>
<td>4</td>
<td>COMM</td>
<td>Amplifier Ground</td>
</tr>
<tr>
<td>5</td>
<td>FDBK</td>
<td>Connection to Feedback Network</td>
</tr>
<tr>
<td>6</td>
<td>VNEG</td>
<td>Negative Supply Input</td>
</tr>
<tr>
<td>7</td>
<td>VOUT</td>
<td>Amplifier Output</td>
</tr>
<tr>
<td>8</td>
<td>VPOS</td>
<td>Positive Supply Input</td>
</tr>
</tbody>
</table>

The AD603 by the passive input attenuator, composition gain control port and a fixed gain amplifier three parts. FIG. 1 is applied to the input terminal after ladder network (VINP) signal attenuated by a fixed gain amplifier output, the amount of attenuation applied voltage is determined by the gain control interface in. Gain adjustment voltage value independent of its own, but only the difference between theVG and its related control voltage GPOS / GNEG pin input resistance up to 50MΩ, so that the input current is very small, resulting in an external circuit to affect the on-chip control circuitry provides gain control voltage decreases. It is suitable for the above characteristics constitute programmable gain amplifier. Figure 1 "slide arm" from left to right is continuously moving. When connecting VOUT pin and FDBK two are not the same, the amplifier gain range is not the same.

When the pin 5 and pin 7 shorted, AD603 gain of $40V_g + 10$, then the gain range is -10dB ~ 30dB, it is designed as a basis and reference. When the foot 5 and 7 feet off, a gain of $40V_g + 30$, then the gain range of 10 ~ 50dB. If at 5 feet and 7 feet connect resistors, the gain will be in the range between them.
Design of the AGC circuit

The circuit of AGC Module is shown in Figure 2 [5].

The design requirement is that when the input signals VIN change at 100mv ~ 2500mv, the VOUT output 310mv ± 5%. After IC1A output attenuation, the amplitude at 1 foot of IC1A is 20mv ~ 500mv. IC1B is the fixed gain amplifier 1.4 times. Therefore, the output of AD603 should be 221.4mv, which determines the scope of AD603 gain in 20.8dB ~ -7.1dB. The gain of AD603 is: $G = 40 \cdot V_{12} + 10$. The control range of V12 can be calculated in 0.27V ~ -0.43V, then the range of VAGC is in 5.67V ~ 4.97V.

From the above analysis, when the AGC control voltage changes from 5.67V to 4.97V, the total gain of AD603 changes from 20.8dB to -7.1dB linearly. It only need to adjust the operating point of Q1. Once the input signal changes, the AGC control voltage VAGC can be obtained from 5.67V to 4.97V from Q1. As can be seen from Figure 2, VAGC depend on the size of the resistance R11 and the collector current. The adjustment of the control voltage VAGC of is to rely on R9. The adjustment method is that if the input signal VIN is 100mv, according to adjusting R9, the output VOUT is 310mv.

After the completion of the circuit design, the method shown in Figure 3 can be tested [6].
Test data can be seen in Table 2. When the input signal strength changes from 100mv to 2500mv, the AGC control circuit adjusts accordingly the size of AGC control voltage VAGC. The voltage of VAGC changes the AD603's gain, so the output signal strength basically will be stable at 310mv ± 5%, which meets to the design requirements.

Table 2. Test data of AGC

<table>
<thead>
<tr>
<th>Input Signal (mv)</th>
<th>100</th>
<th>400</th>
<th>700</th>
<th>1000</th>
<th>1300</th>
<th>1600</th>
<th>1900</th>
<th>2200</th>
<th>2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAGC(V)</td>
<td>5.76</td>
<td>5.74</td>
<td>5.56</td>
<td>5.45</td>
<td>5.38</td>
<td>5.32</td>
<td>5.26</td>
<td>5.20</td>
<td>5.13</td>
</tr>
<tr>
<td>Output Signal (mv)</td>
<td>300</td>
<td>305</td>
<td>309</td>
<td>311</td>
<td>310</td>
<td>304</td>
<td>299</td>
<td>292</td>
<td>288</td>
</tr>
</tbody>
</table>

Conclusion

This article describes the AGC amplifier control circuit design method based on AD603. The test data has been obtained through the experiment. The result proved that the design met the design requirements. This design has been used in product development, and achieved good results.

Conclusions

This article describes the AGC amplifier control circuit design method based on AD603. The test data has been obtained through the experiment. The result proved that the design met the design requirements. This design has been used in product development, and achieved good results.

References

