Oscillation Criteria of Second-order Half-linear Neutral Dynamic Equations with Distributed Deviating Arguments

Yunhui Zeng
College of Mathematics and Statistics, Hengyang Normal University, Hunan, 421002 ,China
dzeng@hynu.cn

Abstract: In this paper, we investigate the oscillation of second-order half-linear neutral dynamic equations with distributed deviating arguments. By using the generalized Riccati transformation and the inequality technique, we establish some new oscillatory criteria for all solutions to second-order half-linear neutral dynamic equations being oscillatory on the time scale .

Introduction
In this paper, we concern with the oscillation of second-order half-linear neutral dynamic equation with distributed deviating arguments of the form

\[(r(t)z^\alpha(t))^\mu - q(t,\xi)x(g(t,\xi))z(\xi) = 0, \quad t \in T,\]

where \(z(t) = x(t) + p(t)x(\tau(t))\) and \(\alpha\) is a constant with \(\alpha \geq 1\).

Throughout this paper, we always assume that:

1. \(r(t), p(t), \tau(t)\) are real-valued rd-continuous positive functions on time scales with \(0 \leq p(t) < 1, \tau(t) \leq t\) and \(\lim \tau(t) = \infty\), where \(p(t)\) is increasing.
2. \(q(t,\xi) \in C_{rd}(T \times [a,b], (0,\infty))\) is not eventually identical zero and decreasing with respect to the second variable \(\xi\), and \(g(t,\xi) \in C_{rd}(T \times [a,b], T)\) is strictly positive rd-continuous \(\Delta\)-differentiable on \(T \times [a,b]\) respectively, where \(\xi \in [a,b], [a,b]_T = \{t \in T : a \leq t \leq b\}\) and \(\liminf_{t \to \infty, \xi \in [a,b]} \{g(t,\xi)\} = \infty\).

\((A_1) \int_a^b \left(\frac{1}{r(t)}\right)^\alpha d\tau = \infty.\)

For a nontrivial solution \(x(t)\) to the equation (1.1), we assume that \(x(t) + p(t)x(\tau(t)) \in C_{rd}(T, \infty)_T\) and \(r(t)[x(t) + p(t)x(\tau(t))]^\alpha \in C_{rd}^1(T, \infty)_T\), where \(t \in [t_0, \infty)_T\).

We restrict our attention to nontrivial solutions to equation (1.1) which exist on some half-line \([t_1, \infty)_T\), and satisfy \(\sup \{x(t) : t \in [t_1, \infty)_T\} > 0\) for all \(t \in [t_1, \infty)_T\). Consequently, we will always assume that solutions to (1.1) exist for all \(t_0 \geq 0\). A solution \(x(t)\) to (1.1) is called oscillatory if it is neither eventually positive nor eventually negative; otherwise it is called a non-oscillatory solution. The equation itself is called oscillatory if all its solutions are oscillatory. Since we are interested in oscillatory behaviour of solutions, we will suppose that the time scale \(T\) under consideration is not bounded, that is, it is a time scale interval of the form \([t_0, \infty)_T\).

We note that if \(T=R\), we have \(\sigma(t) = t, \mu(t) = 0, z^\alpha(t) = z'(t)\) and therefore (1.1) becomes a second-order half-linear neutral differential equation with distributed deviating arguments of the form

\[(r(t)z'(t))^\mu - q(t,\xi)x(g(t,\xi))z(\xi)d\xi = 0.\]
If $T=N$, then $\sigma(t)=t+1$, $\mu(t)=1$, $z^\Delta(t)=\Delta z(t)=z(t+1)-z(t)$, and therefore \((1.1)\) becomes a second-order half-linear neutral differential equation with distributed deviating arguments of the form
\[\Delta(r(t)|\Delta z(t)|^{\alpha-1} \Delta z(t)) + \sum_{\xi=t_0}^{b-1} \frac{q(t,\xi)|x(g(t,\xi))|^{\alpha-1}}{x(g(t,\xi))} = 0. \]

On the other hand, if $T=hN$ for $h>0$, then $\sigma(t)=t+h$, $\mu(t)=h$, $z^\Delta(t)=\Delta_\delta z(t)=\frac{z(t+h)-z(t)}{h}$, and therefore \((1.1)\) becomes a second-order half-linear neutral differential equation with distributed deviating arguments of the form
\[\Delta_\delta(r(t)|\Delta z(t)|^{\alpha-1} z_h^\Delta(t)) + \sum_{\delta=h}^{b-1} q(t,\delta|h)|x(g(t,\delta|h))|^{\alpha-1} x(g(t,\delta|h)) = 0. \]

In recent years, the oscillation theory and the applications of dynamic equations on time scales have attracted much attention (cf. [1-4,6]. For nonlinear neutral dynamic equations, see [3,4,7]. However, the study of oscillatory criteria on dynamic equations with distributed deviating arguments is relatively less (cf. [3]). In this paper, by using the generalized Riccati transformation and the inequality technique, we establish some new oscillatory criteria for all solutions to second-order half-linear neutral dynamic equations being oscillatory on the time scale T.

Main Results

We use the following notations for simplicity:
\[Q(t) = (b-a)q(t,b)(1-p(g(t,a)))^\alpha, \quad \delta(t) = g(t,b), \quad z^{[1]}(t) = r(t)|z^\Delta(t)|^{\alpha-1} z^\Delta(t), \quad z^{[2]}(t) = (z^{[1]}(t))^\alpha, \]
\[\int_T^{T_{\alpha}} \left(\frac{1}{r(s)} \right)^{\frac{\alpha}{\alpha - 1}} \Delta s = r(t,T_0), \quad P_2(t) = Q(t)(\beta(t))^\alpha, \quad \frac{1}{\beta(t)} = \frac{1}{T_0} \int_T^{T_0} (r(s))^{-\frac{1}{\alpha}} \Delta s + \mu(t) \left(\frac{1}{\beta(t)} \right)^{-\frac{1}{\alpha}}, \]
where $T_0 \geq t_0$ for some sufficiently large number t_0.

Theorem 2.1 Suppose that $\langle A_{k} \rangle$ hold, where $k=1,2,3$. In addition, if
\[\delta(t) > t \quad \text{and} \quad \int_{t_0}^{T_0} P_1(s) \Delta s = \infty \quad \text{or} \quad \delta(t) \leq t \quad \text{and} \quad \int_{t_0}^{T_0} P_2(s) \Delta s = \infty. \tag{2.0} \]

Then every solution to equation \((1.1)\) is oscillatory on $[t_0, \infty)_T$.

Proof. Suppose not. Without loss of generality, we may assume that $x(t)$ is an eventually positive solution to equation \((1.1)\) with $x(t) > 0$, $x(r(t)) > 0$ and $x(g(t,\xi)) > 0$ for all $t \in [t_1, \infty)_T$ and $\xi \in [a,b)_T$. Then $z(t) = x(t) + p(t)x(\tau(t)) > 0$ for all $t \in [t_1, \infty)_T$, where $t_1 \geq t_0$. In view of equation \((1.1)\), we have
\[r(t)|z^\Delta(t)|^{\alpha-1} z^\Delta(t) \leq 0, \quad \text{which implies} \quad r(t)|z^\Delta(t)|^{\alpha-1} z^\Delta(t) \quad \text{is an eventually decreasing function. We claim that} \]
\[r(t)|z^\Delta(t)|^{\alpha-1} z^\Delta(t) \quad \text{is eventually nonnegative on} \quad [t_1, \infty)_T. \]

If not, then there is a $t_2 \geq t_1$ such that
\[r(t_2)|z^\Delta(t_2)|^{\alpha-1} z^\Delta(t_2) = c > 0, \quad \text{which yields} \quad r(t)|z^\Delta(t)|^{\alpha-1} z^\Delta(t) \leq r(t_2)|z^\Delta(t_2)|^{\alpha-1} z^\Delta(t_2) = c \]

for $t > t_2$.

It follows that
\[z^\Delta(t) \leq -\left(\frac{c}{r(t_2)^{\frac{1}{\alpha}}} \right)^{\frac{1}{\alpha-1}}. \tag{2.1} \]

Integrating \((2.1)\) both sides from t_2 to t and using $\langle A_{k} \rangle$, we obtain
\[z(t) \leq z(t_2) - (-c^*)^{\frac{1}{a}} \int_{t_2}^{t_2} \left(\frac{1}{r(s)} \right)^{\frac{1}{a}} \Delta s \to -\infty \]
as \(t \to \infty \), which gives \(z(t) \to -\infty \) as \(t \to \infty \). This is a contradiction with the fact that \(z(t) > 0 \) for all \(t \in (t_1, \infty) \).

Hence \(r(t) \left| z^\alpha(t) \right|^{-1} \geq z^\alpha(t) \geq 0 \) eventually. Therefore, one concludes that there is a \(t \geq t_2 \geq t_1 \) such that
\[
z(t) > 0, \quad z^\alpha(t) > 0, \quad z^{[1]}(t) > 0, \quad z^{[2]}(t) < 0, \quad t \geq t_2.
\]
By (2.2) and \(z(t) = x(t) + p(t)x(\tau(t)) \), we have
\[
x(t) \geq z(t) - p(t)z(\tau(t)) \geq (1 - p(t))z(t), \quad t \geq t_2,
\]
which implies
\[
q(t, \xi) = q(t, b)(1 - p(g(t, \xi))) z^\alpha(g(t, \xi)).
\]

Since \(p(t) \) is increasing, by integrating (2.4) both sides from a to b, we have
\[
\int_a^b q(t, \xi) x^\alpha(g(t, \xi)) \Delta \xi \geq \int_a^b q(t, b)(1 - p(g(t, \xi))) z^\alpha(g(t, \xi)) \Delta \xi \geq Q(t) z^\alpha(\delta(t)).
\]
Applying (2.5) to (1.1), we obtain
\[
(r(t)x^\alpha(t))^\alpha + Q(t) z^\alpha(\delta(t)) \leq 0.
\]
Using (2.2) and the Potzche chain rule, for \(\alpha \geq 1 \), we get
\[
(z^\alpha(t))^{\alpha} = \alpha \int_0^1 [z(t) + h \mu(t) z^\alpha(t)]^{\alpha-1} dh z^\alpha(t) \geq \alpha \int_0^1 (z(t))^{\alpha-1} dh z^\alpha(t) = \alpha (z(t))^{\alpha-1} z^\alpha(t) > 0.
\]
From (2.2), (2.6) and (2.7), we know that
\[
z^{[2]}(t) = (r(t)z^\alpha(t))^{-1} \leq -(b - a) q(t, b)(1 - p(g(t, a))) z^\alpha(\delta(t)) = -Q(t) z^\alpha(\delta(t)), \quad t \geq t_2.
\]
For \(t \geq t_2 \), let
\[
w(t) = \frac{z^{[1]}(t)}{z^\alpha(t)}.
\]
It is obvious that \(w(t) > 0 \). Taking the derivative of \(w(t) \), we see that
\[
w^\alpha(t) = \frac{(z(\delta(t)))^\alpha z^{[2]}(t)}{(z(\delta(t)))^\alpha (z^\alpha(t))^\alpha} - \frac{z^{[1]}(t)(z^\alpha(t))^{\alpha}}{(z(\delta(t)))^\alpha (z^\alpha(t))^{\alpha}}.
\]
Applying (2.8) to (2.10), we have
\[
w^\alpha(t) \leq -Q(t) \frac{z^\alpha(\delta(t))}{(z^\alpha(t))^\alpha} - \frac{z^{[1]}(t)(z^\alpha(t))^{\alpha}}{(z^\alpha(t))^\alpha z^\alpha(t)}.
\]
On the other hand, using (2.7), we obtain
\[
\frac{\alpha z^{[1]}(t)(z^\alpha(t))^{\alpha-1} z^\alpha(t)}{(z^\alpha(t))^\alpha z^\alpha(t)} = \frac{\alpha z^{[1]}(t) z^\alpha(t)}{(z^\alpha(t))^\alpha z^\alpha(t)} \leq \frac{\alpha (1 + w^\alpha(t))^{\frac{1}{\alpha}}}{(r(t))^{\frac{1}{\alpha}}}, \quad t \geq t_2.
\]
Applying (2.12) to (2.11), we find
\[
w^\alpha(t) \leq -Q(t) \frac{z^\alpha(\delta(t))}{(z^\alpha(t))^\alpha} - \frac{\alpha (1 + w^\alpha(t))^{\frac{1}{\alpha}}}{(r(t))^{\frac{1}{\alpha}}}, \quad t \geq t_2.
\]
(i) Let \(\delta(t) > t \). Since \(z^{[1]}(t) \) is decreasing, we see that
\[
z(t) = z(T_0) + \int_{T_0}^t (z^{[1]}(s))^{\frac{1}{\alpha}} \left(\frac{1}{r(s)} \right)^{\frac{1}{\alpha}} \Delta s > (z^{[1]}(t))^{\frac{1}{\alpha}} \int_{T_0}^t \left(\frac{1}{r(s)} \right)^{\frac{1}{\alpha}} \Delta s.
\]
Hence, the last inequality implies that
\[
\frac{z(t)}{(z^{[1]}(t))^{\frac{1}{\alpha}}} > \int_{T_0}^t \left(\frac{1}{r(s)} \right)^{\frac{1}{\alpha}} \Delta s = r(t, T_0), \quad t \geq T_0 \geq t_2.
\]

1260
Moreover, by using $z^\sigma(t) = z(t) + \mu(t)z^\alpha(t)$, (H_2) and (2.15), we have

$$
\frac{z^\sigma(t)}{z(t)} = 1 + \frac{\mu(t)z^\alpha(t)}{z(t)} = 1 + \frac{\mu(t)(z^{[1]}(t))^{1/\alpha}}{(r(t))^{\frac{1}{\alpha}}} \leq \frac{\mu(t) + (r(t))^{\frac{1}{\alpha}}r(t,T_0)}{(r(t))^{\frac{1}{\alpha}}r(t,T_0)}
$$

which is equivalent to

$$
\frac{z(t)}{z^\sigma(t)} \geq \frac{(r(t))^{\frac{1}{\alpha}}r(t,T_0)}{(r(t))^{\frac{1}{\alpha}}r(t,T_0) + \sigma(t) - t}. \quad (2.16)
$$

Moreover, by using (2.16), we conclude that

$$
\frac{z(\delta(t))}{z^\sigma(t)} = \frac{z(\delta(t))z(t)}{z(t)z^\sigma(t)} \geq \frac{z(\delta(t))}{z(t)} \cdot \frac{(r(t))^{\frac{1}{\alpha}}r(t,T_0)}{(r(t))^{\frac{1}{\alpha}}r(t,T_0) + \sigma(t) - t}. \quad (2.17)
$$

Since $\delta(t) > t$ and $z(t)$ is increasing, we know $z(\delta(t)) > z(t)$. (2.17) and (2.18) yield

$$
\frac{(z(\delta(t)))^{\frac{1}{\alpha}}}{z^\sigma(t)} \geq \frac{(z(\delta(t)))^{\frac{1}{\alpha}}}{z(t)} \cdot \frac{(r(t))^{\frac{1}{\alpha}}r(t,T_0)}{(r(t))^{\frac{1}{\alpha}}r(t,T_0) + \sigma(t) - t}. \quad (2.19)
$$

Applying (2.19) to (2.13), we obtain

$$
w^\delta(t) \leq -P(t) - \alpha \left(\frac{w^\sigma(t)}{(r(t))^{\frac{1}{\alpha}}}\right)^{\frac{1}{\alpha}}, t \geq T_0. \quad (2.20)
$$

On the other hand, as (2.15) using the definition of $z^{[1]}(t)$, we obtain

$$
w(t) = \frac{z^{[1]}(t)}{z^\sigma(t)} \leq \left(\int_{T_0}^{t} \left(\frac{1}{r(s)}\right)^{\frac{1}{\alpha}} \Delta s\right)^{\alpha}, \quad (2.21)
$$

By the last inequality and (A_3), we conclude that

$$
\lim_{t \to \infty} w(t) = 0.
$$

Integrating (2.20) from T_0 to t, we have

$$
w(t) \leq w(T_0) - \int_{T_0}^{t} P(s) \Delta s - \alpha \int_{T_0}^{t} \left(\frac{w^\sigma(s)}{(r(s))^{\frac{1}{\alpha}}}\right)^{\frac{1}{\alpha}} \Delta s,
$$

using (2.0) and (2.21), which give $w(T_0) \geq \int_{T_0}^{\infty} P(s) \Delta s = \infty$.

This is a contradiction and the proof of part (i) is complete.

(ii) Let $\delta(t) \leq t$. Since $z^{[1]}(t)$ is decreasing, as in part (i), we see that

$$
z^\delta(t) = \frac{(z^{[1]}(t))^{\frac{1}{\alpha}}}{(r(t))^{\frac{1}{\alpha}}}. \quad (2.22)
$$

Integrating (2.22) both sides from $\delta(t)$ to $\sigma(t)$, we have

$$
z^\sigma(t) - z(\delta(t)) = \int_{\delta(t)}^{\sigma(t)} \frac{(z^{[1]}(s))^{\frac{1}{\alpha}}}{(r(s))^{\frac{1}{\alpha}}} \Delta s \leq (z^{[1]}(\delta(t)))^{\frac{1}{\alpha}} \int_{\delta(t)}^{\sigma(t)} \frac{1}{(r(s))^{\frac{1}{\alpha}}} \Delta s,
$$

which is equivalent to

$$
\frac{z^\sigma(t)}{z(\delta(t))} \leq 1 + \frac{(z^{[1]}(\delta(t)))^{\frac{1}{\alpha}}}{z(\delta(t))} \int_{\delta(t)}^{\sigma(t)} \frac{1}{(r(s))^{\frac{1}{\alpha}}} \Delta s. \quad (2.23)
$$
Moreover, \(z(\delta(t)) > z(\delta(t)) - z(T_0) \geq \left(z^{[1]}(\delta(t)) \right)^{\frac{1}{\alpha}} \int_{t_0}^{\delta(t)} \frac{1}{(r(s))^\alpha} \Delta s \), which is equivalent to

\[
\left[\frac{z^{[1]}(\delta(t))}{z(\delta(t))} \right]^\frac{1}{\alpha} \leq \left(\int_{t_0}^{\delta(t)} \frac{1}{(r(s))^\alpha} \Delta s \right)^{-1}.
\]

(2.24)

Applying (2.24) to (2.23) and using the fact that \(\int f(s) \Delta s = \mu(t) f(t) \), we obtain

\[
\frac{z^{\alpha}(t)}{z(\delta(t))} < 1 + \int_{t_0}^{\delta(t)} \left(\frac{1}{r(s)} \right)^\alpha \Delta s = \int_{t_0}^{\delta(t)} \left(\frac{1}{r(s)} \right)^\alpha \Delta s + \mu(t)(r(t))^{-\frac{\alpha}{\gamma}} = \frac{1}{\beta(t)}.
\]

This, from the last inequality, we get

\[
z(\delta(t)) \geq \beta(t) z^{\alpha}(t).
\]

(2.25)

Hence, using (2.25), we have

\[
\left(\frac{z(\delta(t))}{z^{\alpha}(t)} \right)^\alpha \geq \left(\frac{\beta(t) z^{\alpha}(t)}{z^{\alpha}(t)} \right)^\alpha = (\beta(t))^\alpha.
\]

(2.26)

Applying (2.26) to (2.13), we obtain

\[
w^A(t) \leq P_2(t) + \frac{\alpha(w^{\alpha}(t))^{1+\frac{1}{\gamma}}}{(r(t))^{\frac{1}{\alpha}}}.
\]

The rest proof of part (ii) is similar to the proof of part (i). The proof of part (ii) is finished.

The following Lemma will be used in the proof of the next theorems.

Lemma 1 [5]. Let \(\gamma, B \in (0, \infty), A \in R \). Then \(F(v) = Av - Bv^\gamma \) attains its maximum value on \(R \) such that

\[
\max_{v \in R} F(v) = A^\gamma B^{-1}. \]

Theorem 2.2. Assume that \((H_1)-(H_4)\) hold. Let \(T_0 \geq t_0 \). Then there is \(a_0 \) and \(b_0 \) such that \(T_0 < a_0 < b_0 \). Let \(D(a_0, b_0) = \{ H(t) \in C^{\alpha}_{\omega_0}[a_0, b_0], H(t) \neq 0, t \in (a_0, b_0), H(a_0) = H(b_0) = 0 \} \). If there are functions \(H_1(t) \) and \(H_2(t) \in D(a_0, b_0) \) such that

(i) if \(\delta(t) > t \) and

\[
\int_{t_0}^{b_0} [H_1(s)P_1(s) - \frac{r(s)(H_1(s))^{\alpha+1}}{(\alpha+1)^{\alpha+1}(H_1(s))^\alpha}] \Delta s > 0
\]

or

(ii) if \(\delta(t) \leq t \) and

\[
\int_{t_0}^{b_0} [H_2(s)P_2(s) - \frac{r(s)(H_2(s))^{\alpha+1}}{(\alpha+1)^{\alpha+1}(H_2(s))^\alpha}] \Delta s > 0,
\]

(2.27)

then every solution to equation (1.1) is oscillatory on \([t_0, \infty)\).

Proof. Suppose not. Without loss of generality, we may suppose that \(x(t) \) is an eventually positive solution to equation (1.1). Then there is a \(t_1 \geq t_0 \) such that \(x(t) > 0, x'(t) > 0 \) and \(x(g(t, \xi)) > 0 \) for all \(t \in [t_1, \infty) \) and \(\xi \in [a, b] \). We proceed as in the proof of Theorem 2.1 until we find (2.20). Multiplying both sides of (2.20) by \(H_1(t) \) and integrating from \(a_0 \) to \(b_0 \), we obtain
\[
\int_{t_0}^{t} H_i(s)P_i(s)\Delta s \leq \int_{t_0}^{t} w^\sigma(s)H_i^\sigma(s)\Delta s - \int_{t_0}^{t} \frac{aH_i(s)(w^\sigma(s))^{\frac{1}{\alpha}}}{(r(s))^{\frac{1}{\alpha}}} \Delta s = \int_{t_0}^{t} \left[w^\sigma(s)H_i^\sigma(s) - \frac{aH_i(s)(w^\sigma(s))^{\frac{1}{\alpha}}}{(r(s))^{\frac{1}{\alpha}}} \right] \Delta s \quad (2.28)
\]

For simplicity setting \(A = H_i^\lambda(s), B = \frac{aH_i(s)}{(r(s))^{\frac{1}{\alpha}}}, \nu = w^\sigma(t) \), applying Lemma 1 to (2.28), we have

\[
\int_{t_0}^{t} [H_i(s)P_i(s) - \frac{r(s)(H^\lambda(s))^{\alpha+1}}{(\alpha+1)^{\alpha+1}(H(s))^\alpha}] \Delta s \leq 0,
\]

which is a contradiction with (2.27). Therefore, the proof of part (i) is complete. Since the proof of part (ii) is similar to the proof of part (i), we omit it here. The proof of this theorem is complete.

Theorem 2.3 Assume that \((A_1)-(A_4)\) hold. In addition, suppose that there is a rd-continuous and \(\Delta\)-differentiable positive function \(\rho(t)\) such that

\[
\lim_{t \to \infty} \sup \int_{t_0}^{t} [\rho(s)Q(s) - \frac{r(\delta(s))(\rho^\lambda(s))^{\alpha+1}}{(\alpha+1)^{\alpha+1}(\rho(s)\delta^\lambda(s))^\alpha}] \Delta s = \infty, \quad (2.29)
\]

where \(\rho^\lambda(t) = \max\{0, \rho^\lambda(t)\}\). Then every solution of (1.1) is oscillatory on \([t_0, \infty)\).

Proof. Suppose not. Without loss of generality, we may assume that \(x(t)\) is an eventually positive solution to equation (1.1). We proceed as in the proof of the Theorem 2.1 until we find (2.2) and (2.6). Then using (2.2) and the Potzche chain, we obtain

\[
(z^\alpha(\delta(t)))^\lambda = a \int_{0}^{t} (z(\delta(t)) + h(t)(z(\tau(t))))^{\alpha-1} dh(z(\delta(t)))
\]

\[
= a \int_{0}^{t} [h(z(\delta(\sigma(t)))) + (1-h)z(\delta(t))]^{\alpha-1} dh(z^\lambda(\delta(t))) \delta^\lambda(t)
\]

\[
= a z^{\alpha-1}(\delta(t)) z^\lambda(\delta(t)) \delta^\lambda(t)
\]

and

\[
\frac{\delta^\lambda(t)}{z^\lambda(\delta(t))} \geq \frac{r(\sigma(t))^{\frac{1}{\alpha}}}{z^\lambda(\delta(\sigma(t)))}, \quad (2.31)
\]

where \(\alpha \geq 1\).

Define

\[
y(t) = \rho(t) \frac{r(t)(z^\lambda(t))^\alpha}{z^\lambda(\delta(t))}. \quad (2.32)
\]

Then, clearly, \(y(t) \geq 0\) for all \(t \in [t_2, \infty)\). By using (2.30), (2.31) and Lemma 1, we get

\[
y^\lambda(t) = \rho(t) \frac{(r(t)(z^\lambda(t))^\alpha)}{z^\lambda(\delta(t))} + \rho^\lambda(t) \frac{r(\sigma(t))(z^\lambda(\sigma(t)))^\alpha}{z^\lambda(\delta(\sigma(t)))} + h(t)r(\sigma(t))(z^\lambda(\sigma(t)))^\alpha \left(\frac{1}{z^\lambda(\delta(t))} \right)^\lambda
\]

\[
\leq -\rho(t)Q(t) + \frac{r(\delta(t))(\rho^\lambda(t))^{\alpha+1}}{(\alpha+1)^{\alpha+1}(\rho(\delta^\lambda(t)))^\alpha}. \quad (2.33)
\]

Integrating (2.33) both sides from \(t_2\) to \(t\), we obtain

\[
y(t) - y(t_2) \leq -\int_{t_2}^{t} [\rho(s)Q(s) - \frac{r(\delta(s))(\rho^\lambda(s))^{\alpha+1}}{(\alpha+1)^{\alpha+1}(\rho(s)\delta^\lambda(s))^\alpha}] \Delta s,
\]

which implies that

\[
\int_{t_2}^{t} [\rho(s)Q(s) - \frac{r(\delta(s))(\rho^\lambda(s))^{\alpha+1}}{(\alpha+1)^{\alpha+1}(\rho(s)\delta^\lambda(s))^\alpha}] \Delta s \leq y(t_2) - y(t) \leq y(t_2).
\]

This is a contradiction with (2.29).
Acknowledgement

This research was supported by science and technology projects foundation of Hengyang (2014KJ22), social science fund project of Hengyang (2014D060), Cultivation of young teachers of Hengyang Normal University of China and Construct program of the key discipline in Hunan Province [2011(76)].

References

