Factors of Distributed Photovoltaic Power Generation

Chunyan Ma
College of Electrical and Information Engineering, University of Hubei Automotive Technology Shiyan 442002;
College of Information Science and Engineering, University of Wuhan Science and Technology Wuhan, China, 430081
E-mail:mcyjsy@126.com

Shiying Jiang
College of Economy and Management, University Hubei of Automotive Technology Shiyan 442002

Ying Gong
Supply Power of Foshan, foshan, China, 528000
E-mail:gongying@126.com

Abstract—Distributed photovoltaic power generation system can better alleviate the problems of energy shortage and environmental pollution. To save the photovoltaic industry, the state introduced continuous policies since 2012, strongly supported the development of distributed photovoltaic power generation industry. This paper analyzes China’s photovoltaic power generation business model, and further analyzes factors that influence generation electricity.

Keywords—distributed photovoltaic power; key factors; operation mode

I. INTRODUCTION

Distributed photovoltaic power generation system is the distributed generation system that use photovoltaic modules to convert solar energy, small installed capacity and power generation capacity net in the nearest network with the characteristics of local conditions and clean and efficient and it can better alleviate the problems of energy shortage and environmental pollution. Currently, more than 60 countries around the world use a variety of policy tools to encourage the development of Distributed Photovoltaic power industry.

The conflict of China’s PV industry overcapacity has long history, 90 percent of PV modules need to be exported, and the risk of the photovoltaic industry is heavily dependent on foreign markets, exposed to exhaustive when the European and American “double reverse”. To save the photovoltaic industry, the state introduced continuous policies since 2012, strongly supported the development of distributed photovoltaic power generation industry, and proposed that distributed PV will reach 10 million kilowatts in 2015, distributed photovoltaic power generation industry has broad prospects for development.

At present, the relevant research around the photovoltaic power generation is concentrated in which PV electricity price regulation policy research, pricing strategy of feed-in tariff, the PV of government subsidies research and distributed photovoltaic power generation forecasting. This paper analyzes China’s photovoltaic power generation business model, and further analyzes factors that influence generation electricity.

II. OPERATION MODE OF DISTRIBUTED PHOTOVOLTAIC POWER GENERATION SYSTEM IN CHINA

At present, China’s photovoltaic power generation project investment diversification, investment-driven power is complex, and the operating mode has not been fully straightened out. However, we can summary three kinds, namely unified purchase and marketing business model, contract energy management mode and user self-occupied mode. In addition, there are more than several models of hybrid model.

A. Self-Occupied Mode

This mode is that the users themselves construct the photovoltaic power plants, the priority electricity for their own use, the excess electricity access, and the lack of electricity is provided from the power grid. Distributed power and users are located in the same place, and are in the same corporate. In this mode, the user own priority electricity for their own use, excess electricity are sold to the grid in accordance with local coal desulfurization unit benchmark price businesses, while at full power to get government subsidies; The grid enterprises charged to the net electricity tariff at sales catalog price.

Currently, these projects by the users themselves are recovered the investment cost mainly by government subsidies and saving electricity fees. Part of the photovoltaic project investment employers are users who have the will to save and also have the ability to pay higher; Part is the remote areas user, part is hospitals with more high reliability requirements, and there is a considerable part of industrial and commercial users with large installed capacity.

B. Purchasement Mode

This mode is the third party investors is responsible for the photovoltaic power plants, the priority electricity for their own use, the excess electricity access, and the lack of electricity is provided from the power grid. Distributed power and users are located in the same place, and are in the same corporate. In this mode, the user own priority electricity for their own use, excess electricity are sold to the grid in accordance with local coal desulfurization unit benchmark price businesses, while at full power to get government subsidies; The grid enterprises charged to the net electricity tariff at sales catalog price.

Currently, these projects by the users themselves are recovered the investment cost mainly by government subsidies and saving electricity fees. Part of the photovoltaic project investment employers are users who have the will to save and also have the ability to pay higher; Part is the remote areas user, part is hospitals with more high reliability requirements, and there is a considerable part of industrial and commercial users with large installed capacity.
cable net in, then supply the end users. So users and photovoltaic power typically locate in different places.

Power investors will receive government subsidies construction or price subsidies: 1) In the way of construction subsidies, power suppliers at coal desulfurization unit benchmark price sold electricity to the grid business; 2) In the way of price subsidies, generation companies sold electricity to power companies at the Internet benchmark price, without taking access net fee and standby fee. This is a commonly used domestic carrier mode, especially those large wind farms and solar power plants are made to power directly to the Internet.

C. Contract Energy Management Model

It is that the third party investors invest in building photovoltaic power, generating capacity meet users in the same location of the photovoltaic power in priority, the extra power access the Internet, the shortage electric power by electricity companies to users at local net sales price. In this mode, the PV inverter is directly to the user after the low-voltage grid, and the investors get government subsidies at full power. The PV excess energy in accordance with the benchmark price of domestic coal desulfurization unit purchased by power companies, power supply business charge the net amount of electricity to the user in accordance with local sales catalog price.

This model truly PV-place consumptive, more electricity will be sold, shortage mainly be supplied by city electricity. In this mode, PV project investment motivation is more complex, there are both spontaneous self with oriented projects, and fewer personal use mainly supplied to others, as well as supplying all items used by others.

D. Mixed Mode

It is basically a combination of any two kinds or three kinds of modes in above three modes. The large-scale PV demonstration projects invested and constructed by companies generally use mixed mode. For example, Eco-City Investment Company since construction and power for their own distributed photovoltaic power generation facilities, according to "self operations from the bottom with their own distributed photovoltaic power generation facilities, according to to the "model; construction sites and in other units for single bit distributed PV power facilities, according to the contract energy management mode; the use of public space construction of photovoltaic facilities, using purchase and unified sales mode. Thus, while the entire demonstration project use a mixed mode, it is still a single operating mode for single project.

III. FACTORS OF PHOTOVOLTAIC POWER

Many short-term factors influence power generation prediction, such as various types conversion efficiency meteorological factors, location photovoltaic power plants, photovoltaic array rate, installation angle, time and season.

A. The Angle of Incidence of Light on the Different Types of Cell Conversion Efficiency

The angle of incidence of light include azimuth and inclination angle of incidence of light. Refering to the text, comparison test of all kinds of practical conversion efficiency of the battery under the plurality of illumination angle, the conclusion is: the affect of inclination on the crystalline and amorphous silicon cells cell conversion efficiency has the same trend, but the conversion efficiency is affected by changes in the magnitude of inclination crystalline silicon cells is weaker than amorphous silicon cells.
In order to improve the pre-measurement accuracy, it should be point historical data into sunny, cloudy, and rain (snow) days based on the characteristics of day type.

E. Relative Humidity on Generating Capacity

Under the same day type, when ambient temperature and the temperature of photovoltaic panels is similar, the different relative humidity has also big impact on the photovoltaic power generation system. In cloudy weather, the electricity of relative low humidity of the day was significantly higher than the relative humidity higher day. The humidity reflects a more fine cause division for a same day type.

F. Battery Attenuation Loss

The impact of such loss on generating capacity is about 1% per year. The aging decay of polysilicon PV modules, mainly due to the battery’s slow decline save and performance degradations and caused by packaging materials. The assembly material degradation is mainly due to ultraviolet radiation. That solar panels do not match loss such losses affect power generation about 1.3%. Grid-connected PV power plant the cell matrix the battery module strings, in parallel, the ideal state is the operating current series with substantially the same, then the module string substantially the same operating voltage in parallel. But it is difficult to do in the actual security when loading, and for each component, its optimum operating voltage and current necessarily identical, resulting in total power of the entire phalanx is smaller than the sum of the individual components of power.

IV. CONCLUSION

With the development of a lot of good policy about new energy industry, and new energy and network access technical condition matures, domestic large and medium-sized photovoltaic power plants centralized and distributed power stations networks in succession. PV industry technological advances have brought the cost of power stations networks in succession. PV industry

ACKNOWLEDGMENT

This paper received vigorous support of hubei province science and technology plan items (item number: B2015122).We show deep gratitude to them.

REFERENCES


