Research of the Relationship between Partial Discharge and Gas Decomposition Products in SF₆ Insulated Equipment

Gang Lu, Yang Liu
Heilongjiang Electric Power Research Institute, Xiangfang District 150036, Harbin, P.R. China
e-mail: 13163417178@163.com

Abstract—In order to analyze the gas decomposition products under partial discharge by quality and by quantity, designed a 126kV AC industrial frequency power supply, a GIS partial discharge testing platform and a gas detection system, simulated the fault model of ground discharge, used pulse current method on discharge intensity monitor, concluded the characteristic of the concentrations of decomposition as well as its change in concentrations over time. The experimental results indicate that: SF₆ gas decomposed into SOF₂, SO₂, S₂OF₁₀; SOF₂, SO₂ under partial discharge, this procedure has positive correlation with PD duration and partial discharge severity, adsorbent also has effects to the decomposition products.

Keywords—partial discharge; SF₆; decomposition components; gas analysis; defect

I. INTRODUCTION

Most of the common features of electrical fault always accompanied by partial discharge effect, inner defects caused the distortion of the electric field, leading to the uneven of electric field distribution, resulting in the appearance of partial discharge. Partial discharge is the main reason of insulation deterioration. The most commonly used method of fault diagnosis is detecting the process of partial discharge of the device. In general, the existence of the internal insulating defects can be found and confirmed. This measure has important practical significance to ensure safe and reliable operation of the grid. Specific methods includes frequency domain analysis, UHF, ultrasonic method; common methods such as pulse current law, UHF and ultrasonic method has been widely used and has the characteristics of simple and fast, on the other hand it is easily effect by the electromagnetic field near the measuring environment and interfered by noise, and it is also difficult to quantify the partial discharge, which means hard to estimate the state of the equipment insulation.

SF₆ gas has high electric strength, excellent arc performance, stability, chemical resistance and other characteristics. It’s widely used in power devices. Most electrical equipment failure was caused by partial discharge while partial discharge in turn causes decomposition of SF₆ gas, gaseous decomposition products react chemically with metallic material arc chamber, gas chamber metal material and solid insulation materials to form metal fluoride, metal sulfide, metal oxides and sulfur fluorides, such as SF₆, SOF₂, SO₃F₂ and SOF₄ etc. Studies have shown that, due to the presence of moisture in SF₆, these substances occurs hydrolysis reaction to form thionyl substances, thus decomposition characteristics could be use to detect SF₆ gas component of its content to determine the internal state of the device. Thus the use of SF₆ gas decomposition characteristics to achieve the research on-line monitoring and fault diagnosis is on the rise.

The present experiment applied a self-designed 126kV GIS AC power frequency and partial discharge test platform to simulation discharge fault analysis with gas detection systems to monitor SF₆ decomposition due to partial discharge, both qualitative and quantitative analysis were applied, using pulse current method for monitoring intensity of partial discharge. Acquired the characteristic of the concentrations of decomposition as well as its change in concentrations over time. Provided technical supply for further research of SF₆ decomposition analysis, especially for the device state diagnostic and fault detection.

II. GIS PARTIAL DISCHARGE TEST ENTITY

A. Experimental Platform

1) Experimental apparatus.

To study the laws of SF₆ decomposition products produced with partial discharge and correlation factors, particularly design and manufactured a 126kV GIS experimental platform for the simulation of various type of fault. Structure of the platform is shown in figure 2-1. Set all kinds of failure modes, with digital PD detector, real-time monitoring change of PD intensity during the experiment.
2) Test circuit.

According to the literature, SF₆ decomposition experiments PD devices mostly applying frequency high voltage test power supply, in order to acquire the true circumstance of the discharge of the defect, simulating the actual operating conditions of the power grid. Unlike this model, our test circuit uses 50Hz, 126kV direct boost power supply no halo voltage test system, which is characterized by the output current of the industrial frequency, test system itself has small amount of partial discharge, isolation transformers were set between each unit to guarantee a better anti-interference performance, which has nearly the same performance as the grid’s actual operation conditions, thus ensuring the authenticity of the experimental study.

Partial discharge measurement: under experimental condition, partial discharge strength of faulted GIS device was measured synchronously by a system based on pulsed current method. In this experimental system, the background noise is less than 5 pC, and we specially designed non-PD current limiting resistance.

3) SF₆ gaseous decomposition detection system

- Gas chromatography analysis system
- Detector: Parallel TCD, FPD detector;
- Chromatographic column: GsBP-GASPRO 60m × 0.32mm × 5.00µm; (connecting FPD)
- GsBP-GASPRO 30m × 0.32mm × 5.00µm; (connection
Gas chromatography - mass spectrometry analysis system
Detector: MS;
Column: GsBP-GASPRO 60m × 0.32mm × 5.00µm;

B. Experimental Procedure
Setting bus-bar spikes on fault mode of GIS shell discharge, pressure of SF₆ was 0.42MPa, moisture content levels in equipment is within the scope of operating eligibility. Regulate the discharge voltage to achieve a stable partial discharge, continuous recording potential value and partial discharge; recording experimental time. The gas sampling employing three ways: direct sampling, automatic sampling equipment and sampling cylinder. SF₆ decomposition component was measured by gas chromatography and GC-MS, both analyses of qualitative and quantitative methods was applied in the course of the experiment. The interval of gas measurement sampling is 1 hour.

III. EXPERIMENTAL RESULTS
A. Relationship between Partial Discharge and Gas Pressure
Modify the SF₆ gas pressure at the range of 0.1 ~ 0.4MPa, detect the initial discharge voltage and partial discharge strength. results shown in Figure 4 and 5, they show that the density of SF₆ increase with the pressure increasing, a negative relationship exists between the initial discharge voltage and partial discharge strength.

B. Experimental Study without Adsorbent
In the partial discharge experiment platform, set bus-bar spikes on fault mode of GIS shell discharge without installation of absorbent. SF₆ gas pressure is set to 0.11MPa and 0.21MPa, test voltage is applied to carry out the partial
discharge experiment. Detect the variation of main SF₆ decomposition products during the partial discharge procedure.

1) Relationship between partial discharge strength and main product of SF₆ decomposition

Experimental conditions: gas pressure: 0.11MPa, gas humidity: 114.68 × 10⁻⁶ (volume fraction concentration), chamber volume: 0.07m³, corresponding partial discharge under relatively stable conditions, discharge time: 1h.

PD experiment discharge gap is fixed, by adjusting the test voltage, resulting in different partial discharge strength, detecting different SF₆ decomposition components (SOF₂, S₂OF₁₀, and SO₂) under PD.

Discharge voltage is maintained at 30 – 40kV, partial discharge strength increases linearly; background of SF₆ gas exists Air and S₂OF₁₀, no SOF₂ and SO₂; the SO₂ concentration increased along with the partial discharge strength rendering similar changes shown in Figure 8. Concentration of SOF₂ and S₂OF₁₀ contents experience a slight increase with partial discharge shown in Figure 9, Figure 10.
According to Figure 8 and 9, the result shows that partial discharge experiment production SOF$_2$ is $1.59 \sim 1.89 \mu$L/L, augment with the increase of partial discharge strength. The content has greater augmentation in the initial experiments, as partial discharge continue the upward trend is slowed; relationship between S$_2$OF$_{10}$ and partial discharge strength appear to be the same trend with SOF$_2$. As the partial discharge strength augments, the production slightly increase by 0.1μL / L; by analysis the relationship between partial discharge strength and the concentration of SO$_2$, the results show that large amount of SO$_2$ is produced during the partial discharge experiment, these increases shows a linear growth trend, the range of concentration remains within $11.55 \sim 37.62 \mu$L / L. In conclusion, the main production is SO$_2$ and less SOF$_2$.

2) Relationship between discharge time and main product of SF$_6$ decomposition.

Experimental conditions: gas pressure is 0.21MPa, gas humidity: 175.72×10^{-6} (volume fraction concentration) chamber volumes: $0.07m^3$, corresponding partial discharge under relatively stable conditions, discharge time: 8h.

The pressure level in the gas chamber remains constantly at 0.21MPa, PD experiment discharge gap is fixed, by adjusting the test voltage, resulting in different partial discharge strength, detect different SF$_6$ decomposition (SOF$_2$, S$_2$OF$_{10}$ and SO$_2$) components under PD condition.

As the discharge starts, the discharge voltage (44.7 ~ 46.8kV) remain stable, as the partial discharge strength (45 ~ 60pC) is relatively stable, Figure 11,12,13 show under the condition of the discharge voltage and partial discharge strength remains stable, the variation of concentration of SO$_2$,SOF$_2$ and S$_2$OF$_{10}$ as a function of voltage application time. The concentration of SOF$_2$ and S$_2$OF$_{10}$ grows just as the result of prevent experiment shows, but the range of augmentation is larger. The Decomposition produce a great quantity of SO$_2$, and the component of SO$_2$ increase linearly with time.
Experimental Studies with Absorbent

Set adsorbent into the GIS equipment to simulate the actual situation, the discharge experiments are carried out on an environment with absorbent. Analyze the variation of decomposition components under absorbent condition and absorb characteristics of absorbent.

1) Relationship between partial discharge strength and main product of SF$_6$ decomposition under absorbent condition.

Experimental conditions: gas pressure: 0.41MPa, humidity: 113.38 × 10^{-6} (volume fraction concentration), adsorbent: F-03 (in an amount of 10% by weight of the SF$_6$ gas).

Pressure of SF$_6$ gas is 0.41MPa which is the same as the actual operating pressure, discharge voltage change basically in the rate of 58.4 ~ 60.1kV, PD strength is controlled between 40 ~ 58pC.

During the partial discharge test, decompose component SOF$_2$ produced at the initial of discharge, the content is 1.94μL/L, it keeps a steady content during discharge while trace decreased. S$_2$OF$_{10}$ has a stable content, the adsorbent might not adsorb the components otherwise the gas production rate and the adsorption rate SOF$_2$ and S$_2$OF$_{10}$ is in balance. Comparing to the experiment without adsorbent, the pressure grows and the content of SO$_2$ decrease. As time passes, the component of SO$_2$ trend to be stable at about 1.7μL/L.

D. Experimental Absorption

Experimental conditions: SF$_6$ gas pressure: 0.41MPa, humidity: 202.69 × 10^{-6} (volume fraction concentration), the chamber volume 0.07m3, test time 15h adsorbent is F-03, in an amount of 10% by weight of the gas.

After stopping discharge, continuously detecting the content of SF$_6$ decomposition products under effect of adsorbent, the interval of gas sampling is 1 hour.
and SOF_2: SO_2 is adsorbed completely within 7 h and 12 h. SOF_2 shows a trend of decrease during 12 h of observation, showing F-03 adsorbent has an obvious adsorption for SO_2 gas, and a less obvious adsorption for SOF_2.

Table 1. Adsorption Characteristics of Decomposition Products

<table>
<thead>
<tr>
<th>Sampling time (h)</th>
<th>Air (%)</th>
<th>SOF_2 μL/L</th>
<th>$\text{S}2\text{OF}{10}$ μL/L</th>
<th>SO_2 μL/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.07</td>
<td>1.89</td>
<td>0.10</td>
<td>1.22</td>
</tr>
<tr>
<td>1</td>
<td>0.07</td>
<td>1.89</td>
<td>0.10</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>1.87</td>
<td>0.10</td>
<td>0.81</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
<td>1.91</td>
<td>0.11</td>
<td>0.81</td>
</tr>
<tr>
<td>4</td>
<td>0.06</td>
<td>1.86</td>
<td>0.11</td>
<td>0.61</td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>1.91</td>
<td>0.12</td>
<td>0.61</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>1.89</td>
<td>0.12</td>
<td>0.19</td>
</tr>
<tr>
<td>7</td>
<td>0.06</td>
<td>1.84</td>
<td>0.13</td>
<td>0.19</td>
</tr>
<tr>
<td>8</td>
<td>0.06</td>
<td>1.86</td>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.06</td>
<td>1.79</td>
<td>0.13</td>
<td>0</td>
</tr>
</tbody>
</table>

Table II. Discharge Voltage Under Different Experimental Conditions, the Maximum Volume and the Decomposition Products Bureau Maximum Content

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>P (MPa)</th>
<th>Voltage (kV)</th>
<th>Q_{max}(pC)</th>
<th>$\text{Max. Content(μL/L)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>0.11</td>
<td>40</td>
<td>90</td>
<td>1.89 0.26 37.62</td>
</tr>
<tr>
<td>No</td>
<td>0.21</td>
<td>45</td>
<td>80</td>
<td>1.88 0.22 24.96</td>
</tr>
<tr>
<td>Yes</td>
<td>0.41</td>
<td>60</td>
<td>58</td>
<td>1.98 0.15 1.72</td>
</tr>
</tbody>
</table>

When partial discharge occurs, electrons are accelerated in an electric field, form high-energy electrons, electron collision induced gas ionization, under non-equilibrium conditions, the electron temperature is much higher than the gas temperature, electron energy has a wide distribution, there exist the energetic electrons which has several times higher energy than the energy of average electrons. During the partial discharge, the average energy of electron could reach 5.03eV, which is higher than the energy of S-F bond. Electron impact SF_6 molecules lead to molecular orbital fracture, producing electrons, ions, free radicals and other unstable chemical group, by attachment or recombination regrouping decomposition products.

When high-energy electron bombardment SF_6, O_2, it can be gradually decompose SF_7^-, SF_5^-, SF_4^-, SF_2^- and O^-, these chemical group has further reaction to produce SF_5, SF_4, SF_3 and SF_2. When there exist no impurities in the gas or container surface, decomposition products of SF_6 will quickly compounded. When O_2 exists, the process will generate thioredoxin fluoride, such as SOF_2, S_2OF_3, S_2OF_{10}, SO_2 and H_2O react to form SO_2. The experiment verifies the production of SOF_2, S_2OF_3 and SO_2.

IV. Conclusion

The partial discharge experiment on 126kV GIS partial discharge experimental platform detecting the SF_6 decomposition production, making following conclusions:

a. Initial discharge voltage rise up as the pressure increase. While keep the initial discharge voltage stable, the PD strength decrease as the pressure increases.

b. Main products of the SF_6 gas decomposition are SO_2 and SOF_2, content of SO_2 increases as the discharge time rise, resulting in production of a small amount of S_2OF_{10}.

c. After the installation of the adsorbent, the content of SOF_2 and S_2OF_{10} keep stable after the discharge stopped. SO_2 is adsorbed completely within 7 h and 12 h. SOF_2 shows a trend of decrease during 12 h, showing F-03 adsorbent has an obvious adsorption for SO_2 gas, and a less obvious adsorption for SOF_2.

REFERENCES

[1] IEC 60480 2004 Guidelines for the checking and treatment of sulfur hexafluoride (SF_6) taken from electrical equipment and specification for its re-use

