Structure Analysis of Genomic Islands Flanked by 5’ and 3’ End of the tRNAGly-CCC Gene in *Delftia Acidovorans* SPH-1

Lingwei Su
College of Life and Environmental Sciences
Shanghai Normal University
Shanghai, China

Qingze Zha
College of Life and Environmental Sciences
Shanghai Normal University
Shanghai, China

Xuan Peng
College of Life and Environmental Sciences
Shanghai Normal University
Shanghai, China

Lei Song*
College of Life and Environmental Sciences
Shanghai Normal University
Shanghai, China
songlei@shnu.edu.cn

Abstract—*Delftia acidovorans* SPH-1 is a beta-Proteobacterium that degrades a number of organic compounds. Genomic islands play the important role in horizontal gene transfer. Two prophage-related genomic islands (GIs), SPHGI Gly-CCC-1 and SPHGI Gly-CCC-2, were determined and are integrated into 5' and 3' end of the tRNAGly-CCC gene (Daci_R0056) that was aligned with *D. acidovorans* SPH-1 chromosome. The genomic islands that have similar flanking direct repeats and homologous integrases with SPHGI Gly-CCC-1 and SPHGI Gly-CCC-2 verified in *Delftia* sp. Cs1-4, *Bordetella petrii* strain DSM 12804, *Pseudomonas stutzeri* DSM 4166, and several *Pseudomonas aeruginosa* strains, respectively. The cutting sites of the integrases in SPHGI Gly-CCC-1 and SPHGI Gly-CCC-2 that are annotated as DNA breaking-rejoining enzyme and P4 integrase are located inside DHU loop and downstream region of TΨC loop, respectively. SPHGI Gly-CCC-1, SPHGI Gly-CCC-2, and their structure similar GIs should be transfer into many beta-Proteobacterium chromosomes that have highly similar tRNA Gly-CCC gene with *D. acidovorans* SPH-1, and these strains that capture the GIs will obtain new character.

Keywords—genomic islands (GIs); *Delftia acidovorans* SPH-1; tRNAGly-ccc gene; integrase; structure similarity

I. INTRODUCTION

Delftia acidovorans SPH-1 is a strain of the microbial consortia that contain three representative organisms, *Parvibaculum lavamentivorans*, *Comamonas testosteroni*, and *D. acidovorans*, and can completely degrade commercial linear alkylbenzenesulfonate (LAS) \(^1\). Meanwhile, taurine moiety can be utilized and produce cholate via TauXY, Xsc, a sulfite exporter and sulfite dehydrogenase in *D. acidovorans* SPH-1 \(^2, 3, 4\). Genomic islands are products of horizontal gene transfer (HGT) that play an important role for the evolution of prokaryote chromosomes. DAGI-1 and DAGI-2 were determined as the metal resistance genomic islands (GIs) in *D. acidovorans* SPH-1 through comparative genomics analysis with *Cupriavidus metallidurans* CH34, and their integration sites are not the tRNA\(^{Gly}\) genes \(^5\). Accidentally, two integrases (Daci_R0438 and Daci_R0439) that exist nearby left and right flanking sequence of tRNA\(^{Gly-CCC}\) gene (Daci_R0056) were found in *D. acidovorans* SPH-1, respectively. The single copy tRNA\(^{Gly-CCC}\) gene sequence was aligned with *D. acidovorans* SPH-1 chromosome, homologous sequences of 5' and 3' end of the tRNA\(^{Gly-CCC}\) gene were located in its upstream and downstream. Two GIs that simultaneously exist nearby 5' and 3' end of the tRNA\(^{Gly-CCC}\) gene were determined in *D. acidovorans* SPH-1. Then, the integrase genes and flanking direct repeats (DRs) were aligned with all sequenced chromosomes using Tblastn and Blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The structure similar GIs were verified in some *Delftia*, *Bordetella*, and *Pseudomonas* strains. The action sites of the integrases in two GIs are localized in DHU stem-loop and downstream region of TΨC loop through analysis of flanking DRs in structure similar GIs.

II. MATERIALS AND METHODS

All chromosomes, tRNA\(^{Gly}\) gene, and the integrase protein sequences were extracted from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/). The tRNA\(^{Gly}\) genes (Daci_R0004, Daci_R00036, Daci_R00037, Daci_R00040, and Daci_R00056) were aligned with the *D. acidovorans* SPH-1 chromosome sequence through Blast from NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The region of GIs will be determined if the distance between every tRNA\(^{Gly}\) gene sequence and its homologous sequence is 5kb-500kb and at least one integrase exists nearby the tRNA\(^{Gly}\) gene or its homologous sequence. The GIs will be accurately localized when the flanking DRs are further determined using Blastn. The integrases of the GIs was aligned with the all sequenced chromosomes through Tblastn from NCBI. The tRNA\(^{Gly}\) gene that is the insert site of the GI
Two genomic islands were integrated into 5' and 3' end of tRNAGly-CCC gene (Daci_R0056).

Six tRNA\(^{Gly}\) genes that their anticodons are GCC, TCC and CCC were annotated in \(D.\) acidovorans SPH-1. Three tRNA\(^{Gly}\) genes (Daci_R00036, Daci_R00037, and Daci_R00038) that form a cluster (from 2912398 to 2912751) and an adjacent tRNA\(^{Gly}\) gene (Daci_R00040) (from 2914166 to 2914241) are same nucleotide sequence, and their anticodon is GCC. Only tRNA\(^{Gly}\)-CCC gene (Daci_R0056) (Fig.1a) was become the integration site of GIs using this gene sequence alignment with the \(D.\) acidovorans SPH-1 chromosome. Interesting, two GIs, namely SPHGIGly-CCC-1 and SPHGIGly-CCC-2, were simultaneously inserted into 5' and 3' end of the tRNA\(^{Gly}\)-CCC gene, and their DRs are located in symmetrical DHU loop and downstream region of T\(^{Ψ}\)C loop (See TABLE 1 and Fig. 1a). Only one integrase exists in every genomic island. The integrase of SPHGIGly-CCC-1 is annotated as DNA breaking-rejoining enzyme, and the integrase of SPHGIGly-CCC-2 is annotated as P4 integrase. The GC\% of SPHGIGly-CCC-1 and SPHGIGly-CCC-2 are obviously lower than of the \(D.\) acidovorans SPH-1 chromosome.

B. The structure similar GIs with SPHGIGly-CCC-1 and SPHGIGly-CCC-2

Using protein sequence similar alignment with all sequenced chromosomes, the integrase (DelCs14_2650) is high similar (≥98%) with Daci_4138 in SPHGIGly-CCC-1. Cs1-4GI\(^{Gly}\)-CCC that contains the DelCs14_2650 was accurately localized in \(Delftia\) sp. Cs1-4 through sequence alignment of DRs of SPHGIGly-CCC-1. Similarly, Bp12804GI\(^{Gly}\)-CCC, Ps4166GI\(^{Gly}\)-CCC, PaNCGM2.S1GI\(^{Gly}\)-CCC, PaNCGM257GI\(^{Gly}\)-CCC, PaVRFPA04GI\(^{Gly}\)-CCC-1 and PaVRFPA04GI\(^{Gly}\)-CCC-2 that own one sequence similar integrase (Daci_4139) (≥98%) and DRs with SPHGIGly-CCC-2 were verified in \(P.\) putida DSM 12804, \(P.\) stutzeri DSM 4166 and some \(P.\) aeruginosa strains (TABLE 1). The integrases of SPHGIGly-CCC-1, SPHGIGly-CCC-2 and their structure similar GIs were analyzed by MEGA 6. The result showed that the integrases were divided into two types (Fig. 2). One group is annotated as DNA breaking-rejoining enzyme and belongs to two structure similar GIs associated with 5' end of tRNA\(^{Gly}\)-CCC gene, another is annotated as P4 integrase and belongs to seven structure similar GIs flanked by 3' end of tRNA\(^{Gly}\)-CCC gene. The cutting and binding sites of the DNA breaking-rejoining enzyme were predicted in symmetrical DHU stem-loop (5'GTTCAATGGCAAGGAC3') of DRs that were aligned by ClustalW2 in SPHGIGly-CCC-1 and Cs1-4GI\(^{Gly}\)-CCC. So, the cutting site of the integrases is 5'ATTGGCA3', and the binding site of the integrases is 5'GTTCAATGGCAAGGAC3'. The cutting site of the P4 integrase was predicted in downstream region of T\(^{Ψ}\)C loop (5'GATTCCTTGCCCGCTCCTA3') of DRs that were aligned by ClustalW2 in SPHGIGly-CCC-2 and its structure similar GIs. Interesting, two copies tRNA\(^{Gly}\)-CCC genes were become integration site of GIs, namely PaVRFPA04GI\(^{Gly}\)-CCC-1 and PaVRFPA04GI\(^{Gly}\)-CCC-2 in \(P.\) aeruginosa VRFP04. PaVRFPA04GI\(^{Gly}\)-CCC-1 contains PaVRFPA04GI\(^{Gly}\)-CCC-2, and their partial sequences are high similar (26kb). Thus, PaVRFPA04GI\(^{Gly}\)-CCC-1 and PaVRFPA04GI\(^{Gly}\)-CCC-2 that form the GIs group are named as the nest GIs. The gene contents between Cs1-4GI\(^{Gly}\)-CCC and SPHGIGly-CCC-1 are almost completely different. Both \(Delftia\) sp. Cs1-4 and \(D.\) acidovorans SPH-1 will obtain new characteristics if transformation between them is operated each other. SPHGIGly-CCC-1 contains a number of hypothetical proteins and phage-related proteins, a pathogenesis-like transcriptional factor (Daci_4092) and a phage transcriptional regulator AlpA (Daci_4137) that is highly similar (≥94%) with the protein (DelCs14_2651) of \(Cs1-4GI\(^{Gly}\)-CCC. AlpA can active the P4 integrase in \(E.\) coli \((\Psi)\), and it will be verify whether the AlpA protein (Daci_4137) also can regulate DNA breaking-rejoining enzyme type integrase (Daci_4138). Cs1-4GI\(^{Gly}\)-CCC also contains a pathogenesis-like transcriptional factor (DelCs14_2724) that is different with Daci_4092 and is also phage-related GIs.

Figure 1. The second structure of tRNA\(^{Gly}\)-CCC genes in \(Delftia\) (a), \(Bordetella\) (b), and \(Pseudomonas\) (c).
TABLE 1. The characteristics of GIs flanked by tRNA\(^{\text{Gly-CCC}}\) genes in *D. acidovorans* SPH-1 and some strains

<table>
<thead>
<tr>
<th>GI</th>
<th>Strain</th>
<th>Range</th>
<th>Insertion site</th>
<th>DR(UP/DOWN)</th>
<th>Size (bp)</th>
<th>integrase</th>
<th>CDD</th>
<th>Genomic island GC% (genome GC%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHG(^{\text{Gly-CCC}})-1</td>
<td>Delftia acidovorans s SPH-1</td>
<td>4481370-4531427</td>
<td>Daci_R0056 4531404..4531477</td>
<td>AAGCGGCGGTTCGT AAGCGGGCGGTGT</td>
<td>50.058</td>
<td>Daci_4138 4529912..4531123</td>
<td>DNA breaking-rejoining enzyme</td>
<td>62.55% (66.48%)</td>
</tr>
<tr>
<td>SPHG(^{\text{Gly-CCC}})-2</td>
<td>Delftia acidovorans s SPH-1</td>
<td>4531458-4614944</td>
<td>Daci_R0056 4531404..4531477</td>
<td>GATTCCTTTCGCC GCTCCA/GATTCCA</td>
<td>83.847</td>
<td>Daci_4138 4531718..4533664</td>
<td>P4 integrase</td>
<td>60.70% (66.48%)</td>
</tr>
<tr>
<td>Cs1-4G(^{\text{Gly-CCC}})</td>
<td>Delftia sp. Cs1-4</td>
<td>3023199-3084775</td>
<td>DelCs14_R00 3023149..3023222</td>
<td>GATTCCCTTCGCC GCTCCA/TTCACCCGCTCCA</td>
<td>61.577</td>
<td>DelCs14_2 650 3023429..3024712</td>
<td>DNA breaking-rejoining enzyme</td>
<td>63.78% (66.7%)</td>
</tr>
<tr>
<td>Bp12804G(^{\text{Gly-CCC}})</td>
<td>Bordetella petrii strain DSM 12804</td>
<td>4417743-4578568</td>
<td>Bpettrna_44 4576398..4576912</td>
<td>TGGAGCGGGGTGAT GGGAA/TGGAGCGGGGTGAT</td>
<td>159.114</td>
<td>Bpet4316 complement(t(4574670..4576598))</td>
<td>P4 integrase</td>
<td>61.15% (65.5%)</td>
</tr>
<tr>
<td>Ps4166G(^{\text{Gly-CCC}})</td>
<td>Pseudomonas stutzeri DSM 4166</td>
<td>1309004-1377715</td>
<td>PSTAA_1291 1377696..1377769</td>
<td>TGGAGCGGGCGAA GGGATCT/GCGGGCGAAAGGGAA TC</td>
<td>68.712</td>
<td>PSTAA_12 90 complement(t(1375527..1377455))</td>
<td>P4 integrase</td>
<td>63.03% (64.0%)</td>
</tr>
<tr>
<td>PaNCGM2.S1G(^{\text{Gly-CCC}})</td>
<td>Pseudomonas aeruginosa NCGM2.S1</td>
<td>1513064-1597104</td>
<td>NCGM2_145 1597085..1597158</td>
<td>TGGAGCGGGCGAA GGGATCT/GCGGGCGAAAGGGAA TC</td>
<td>84.041</td>
<td>NCGM2_1 452 complement(t(1594915..1596843))</td>
<td>P4 integrase</td>
<td>60.85% (66.1%)</td>
</tr>
<tr>
<td>PaNCGM257G(^{\text{Gly-CCC}})</td>
<td>Pseudomonas aeruginosa DNA, complete genome, strain: NCGM257</td>
<td>523363-5330002</td>
<td>PA257_5183 5233579..5233652</td>
<td>TGGAGCGGGCGAA GGGATCT/GCGGGCGAAAGGGAA TC</td>
<td>96.370</td>
<td>PA257_518 4 5233894..5235822</td>
<td>P4 integrase</td>
<td>69.40% (65.9%)</td>
</tr>
<tr>
<td>PaVRFPA04G(^{\text{Gly-CCC}})-1</td>
<td>Pseudomonas aeruginosa VRFP A04</td>
<td>1639727-1812416</td>
<td>P797_08195 1812397..1812470</td>
<td>TGGAGCGGGCGAA GGGATCT/GCGGGCGAAAGGGAA TC</td>
<td>172.690</td>
<td>P797_0819 5 complement(t(1810228..1812156))</td>
<td>P4 integrase</td>
<td>63.08% (66.5%)</td>
</tr>
<tr>
<td>PaVRFPA04G(^{\text{Gly-CCC}})-2</td>
<td>Pseudomonas aeruginosa VRFP A04</td>
<td>1657845-1745231</td>
<td>P797_08195 1745212-1745285</td>
<td>TGGAGCGGGCGAA GGGATCT/GCGGGCGAAAGGGAA TC</td>
<td>87.387</td>
<td>P797_0819 0 complement(t(1743042..1744970))</td>
<td>P4 integrase</td>
<td>60.83% (66.5%)</td>
</tr>
</tbody>
</table>

The gene contents of SPHG\(^{\text{Gly-CCC}}\)-2 is partially similar with its structure similar GIs (about 50kb). SPHG\(^{\text{Gly-CCC}}\)-2 and its structure similar GIs also contain a highly similar phage transcriptional regulator AlpA protein. This enzyme should be the transcriptional active factor of the P4 integrase in SPHG\(^{\text{Gly-CCC}}\)-2 and its structure similar GIs. SPHG\(^{\text{Gly-CCC}}\)-2 is high similar with some sequence of Bp12804G\(^{\text{Gly-CCC}}\) that also contains two extra regions (about 12kb and 62kb, respectively) and of PaNCGM2.S1G\(^{\text{Gly-CCC}}\) and PaVRFPA04G\(^{\text{Gly-CCC}}\)-2 that...
have almost same sequence and also contain about 3kb extra region. Bp12804GI_{gly-CCC} that contains many multi-antibiotics resistance genes has been named as GI6 [9]. The two GIs, namely PAO1GI-1 and PA14GI-6, associated with tRNA_{gly-CCC} gene have been determined in <i>P. aeruginosa</i> PAO1 and UCBPP-PA14 [10]. The integrase (PA0728) of PAO1GI-1 is annotated as the HP1 integrase that is different with the integrase of GIs that were found in this research, and its flanking DRs are symmetrical TΨC stem-loop of the tRNA_{gly-CCC} gene (5'AGGGTTCCAGATCCCTC3'). So, the cutting site of the integrase is 5'TTCGATTΨC3'), and its binding sites are 5'AGGG3' (5'CCTC3'). PAO1GI-1 has been deleted and reintegrated into the corresponding chromosome, but PA14GI-6 can't be deleted and reintegrated [11]. The integrases of PA14GI-6 are different with the integrase of SPHGI_{gly}-2 and its flanking DRs are shorter than of SPHGI_{gly}-2, so it is probable that the tRNA_{gly-CCC} gene has various action sites of the integrases, not only symmetrical anticondon stem-loop, symmetrical TΨC loop, and asymmetrical 3' end of the tRNA gene [12], but also asymmetrical anticondon stem-loop, asymmetrical TΨC loop, symmetrical and asymmetrical DHU stem-loops, asymmetrical 5' end of the tRNA gene. In addition, the cutting sites of the integrases in GIs flanked by asymmetrical 3' end of the tRNA_{gly-CCC} gene maybe different because the lengths of the GIs' flanking DRs are different. SPHGI_{gly}-2, SPHGI_{gly}-3, SPHGI_{gly}-4, PA14GI-6, Bp12804GI_{gly}-CC, Ps146GI_{gly}-CC, and PaNCGM2.S1GI_{gly}-CC were determined through Islander [13], but the flanking DRs that were accurately localized in this research should be more reliable and are slightly different with the results of Islander.

C. Structure characteristics of tRNA_{gly-CCC} genes in GIs

Genomic tRNA Database (http://grnamdb.ucsc.edu/) provides the tRNA messages of 629 Bacteria. The anticondons of tRNA_{gly} genes are GCC, TCC, and CCC in Bacteria. 250 tRNA_{gly-CCC} genes, 610 tRNA_{gly-TCC} genes, and 923 tRNA_{gly-GCC} genes exist in 629 Bacteria in Genomic tRNA Database. Structure similar GIs that were integrated into tRNA_{gly-CCC} genes belong to <i>Delftia</i>, <i>Bordetella</i>, and <i>Pseudomonas</i> that have almost single-copy and intragenus same sequence of tRNA_{gly-CCC} genes. The tRNA_{gly-CCC} genes that are located in all similar structure GIs are highly conservative in DHU stem-loop, TΨC stem-loop, and anticonden stem-loop (See Fig. 1a-c). The anticonden stem-loops of tRNA_{gly-CCC} genes in <i>Delftia</i>, and <i>Pseudomonas</i> are the more conservative than in <i>Bordetella</i>, but the DHU stem-loops of tRNA_{gly-CCC} genes in <i>Delftia</i>, and <i>Bordetella</i> are the more conservative than in <i>Pseudomonas</i>. All stains belong to Betaproteobacteria in this research. Now about 3000 chromosomes are sequenced in Bacteria. So, analysis action sites of the integrases that are located in GIs flanked by tRNA_{gly-TCC} gene will be recognized though the tRNA_{gly-TCC} gene alignment with the correclative chromosome.

IV. CONCLUSIONS

SPHGI_{gly}-CC-1, SPHGI_{gly}-CC-2, and their structure similar GIs flanked by the tRNA_{gly-CCC} gene were determined in <i>D. acidovorans</i> SPH-1, <i>Delftia</i> sp. Csl-4, <i>B. petrii</i> strain DSM 12804, <i>P. stutzeri</i> DSM 4166, and several <i>P. aeruginosa</i> strains. The nest GIs (PaVRFPAPA04GI_{gly}-CC-1 and PaVRFPAPA04GI_{gly}-CC-2) were found in <i>P. aeruginosa</i> VRFPAPA04. The action site of the integrases in SPHGI_{gly}-CC-1 and its structure similar GI was predicted as the DHU stem-loop, and the action site of the integrases in SPHGI_{gly}-CC-2 and its structure similar GIs was predicted in downstream region of TΨC loop.

ACKNOWLEDGMENTS

This work was financially supported by National Program on Key Basic Research Project (973 Program) sub-topics (2012CB721005) and Shanghai Normal University Project (No. SK201335).

REFERENCES