Design of a Hydrogen Content on-line Measurement System in the Process of Steel Heat Treatment

Zhang Yu
College of Information Science and Engineering
Northeastern University
zhangyu@cc.neu.edu.cn

Zhai Yingying
School of Materials and Metallurgy
Northeastern University
zyy@cc.neu.edu.cn

Li Ying
School of Materials and Metallurgy
Northeastern University
liying@mail.neu.edu.cn

Ding Yushi
School of Materials and Metallurgy
Northeastern University
602610779@qq.com

Abstract—This paper describes a hydrogen content on-line measurement system in the process of steel heat treatment based on the theory of hydrogen concentration cell. This System design includes two main measurement units and a MCU for calculation and output. The method of measurement data processing is discussed in this paper, and an algorithm of temperature value calibration is also proposed. Final test shows that the instrument has features of portability, continuity and real time capability, which make it has a potential future in the hydrogen content measurement in metallurgical enterprises.

Keywords—Hydrogen content measurement, Hydrogen concentration cell, Portable instrument, Temperature calibration, Piecewise function approximation algorithm

I. INTRODUCTION
Because of the low solubility of hydrogen in solid steel, it would be precipitated in the process of solidification and cooling of molten steel with some gas such as CO, N₂ etc [1]. The precipitated hydrogen would cause some defects such as subsurface blowholes, central pipe and porosity, and these defects would lower the intensity and plasticity of the steel, which is so called hydrogen embrittlement phenomenon [2]. It is very helpful to design an instrument which can measure the hydrogen content in the process of steel heat treatment. However, traditional equipments in this field such as SLM and NOTORP [3,4] are normally too cumbersome and expensive, in this paper a portable and low cost design for the measurement of hydrogen is proposed.

II. OPERATING PRINCIPLE
Hydrogen sensor is designed based on the theory of hydrogen concentration cell, as Figure.1 shows. The shadow part is the proton conductor electrolyte. The high hydrogen differential pressure side (P₁₇) is anode and the low hydrogen differential pressure side (P₁₅) is cathode, so the cell reaction formula is given:

\[H_2(\text{I}) = H_2(\text{II}) \]

(1)

Figure 1. Illustrative diagram of hydrogen concentration cell

Because of the difference of hydrogen chemical potential between the two electrodes, there would be generated different electrode potential caused by the electrochemistry reactions at the boundary between both of electrodes and the electrolyte. According to Nernst formula:

\[E = \frac{RT}{2F} \ln \frac{P_{\text{I}}}{P_{\text{II}}} \]

(2)

where \(E \) is the electromotive force of the hydrogen concentration cell, \(R \) is the universal gas constant \((8.314 J \cdot mol^{-1} \cdot K^{-1})\), \(F \) is the faraday's constant \((96500 C \cdot mol^{-1})\) and \(T \) is the absolute temperature. \(P_{\text{I}} \) and \(P_{\text{II}} \) (atm) are the hydrogen partial pressure of either electrode, which one is the certain reference electrode, the other is measurement electrode. So as long as the \(E \) and \(T \) are measured, the hydrogen partial pressure of measurement electrode will be calculated by formula (2), and the final measurement results will be presented in logarithm form according to custom.

III. SYSTEM DESIGN
As mentioned above, the main objective of the system is measuring the two parameters: \(E \) and \(T \). The system chart of the design is shown in Figure.2.
This MCU-based system consists of several modules, of which the electromotive force measurement module and the temperature measurement module are in charge of measuring the two expected parameters, the LCD module and SD card module are in charge of showing and storing the calculated results respectively. There are also other modules such as real-time clock module, key input module and power supply module and so on. Most of the units are connected with a micro controller unit, ATmega64, which is a high-performance, low-power Atmel AVR 8-bit microcontroller with 64K bytes in-system programmable flash. The unit inside the dotted box as Figure.2 shows only operates in the calibration phase. The calibration phase works before the real measurement phase. When the system is powered up, it reads the key input to switch between the two phases. The main measurement program of the microcontroller consists of reading all the input measurement parameters and calculating, then showing the final results on the LCD and storing the data into the SD card, as Figure.3 shows. The calibration program will be discussed later.

A. electromotive force measurement unit

The main job of electromotive force measurement unit is measuring a variable DC voltage input, because the resistance of the hydrogen concentration cell is high, in order to obtain accurate electromotive force data, the measuring circuit needs very high input resistance. So a precision AD converter with 4½ digit and BCD output, ICL7135, is chosen to build the electromotive force measurement circuit. ICL7135 has input resistance as high as 1000MΩ, which affect little on the measured circuit [5]. As ICL7135 is a kind of AD converter using double integral circuit, we use the method of counting the clock of integral phase to get the voltage value. As Figure.4 shows, the “busy” output of ICL7135 remains high during the integral phase. The time of integration phase is constant, while the voltage is proportion to the time of anti-integration phase. So as long as the time of integration is acquired, the input voltage is obtained too.

B. temperature measurement unit

The temperature measurement sensor used here is K-type thermocouple, so MAX6675 was chosen as the key component of the circuit. It performs cold-junction compensation and digitizes the signal from thermocouple.
The data is output in a SPI bus, which can be easily connected with MCU [6].

A lot of methods were adopted in circuit to achieve better measurement result, such as placing ceramic bypass capacitor to the supply, placing a large ground plane in the PCB. However, the accuracy of the MAX6675 is susceptible to noises and self-heating, a useful calibration scheme should be applied [7-8]. As shown in Figure.2, a PC and a Fluke5520A calibrator which can simulate the output signal of thermocouple are used for calibration. Firstly the computer sends the output command to the calibrator by interactive units and continuous measurement, the data saved in the SD card is 16Mn rare-earth steel produced by the institute of metal research of chinese academy of sciences. After automatic measurement, the system can show and save the hydrogen content measurement of a steel sample which is processed or calibrated before use, which make it easy for changing the referring material for measurement. The system can show and save the temperature, electromotive force and hydrogen content simultaneously. All the measurement data have been processed or calibrated before use, which make the

RESULTS AND CONCLUSION

As Table I shows, the whole curve is divided into several parts by different linear or nonlinear function. Then all the important calibration information, including temperature range and function coefficients, will be saved in the EEPROM of MCU for future use in the measurement phase.

C. interactive units

To interact with the users, the matrix keyboard and LCD are used in the part of user interface which are easy to input and plain to show measurement results. Every value from the keyboard input can be saved in the SD card for the next measurement. All the measurement and calculation results will be saved in the card in plain file format. Results of every measurement occupy an independent file ordered by timestamp, which are very easy for further processing in the PC.

IV. RESULTS AND CONCLUSION

After precise calibration, this instrument was used in the hydrogen content measurement of a steel sample which is 16Mn rare-earth steel produced by the institute of metal research of chinese academy of sciences. After automatic and continuous measurement, the data saved in the SD card was taken out for analysis. Figure 8 shows the relation curve of temperature and P^H_{III} value. The experiments and tests show that the system has many good features. Its integrated circuit design makes it very portable to use without the assistance of any other equipment. The P^H_{III} value can be input at all times when needed, which make it easy for changing the referring material for measurement. The system can show and save temperature, electromotive force and hydrogen content simultaneously. All the measurement data have been processed or calibrated before use, which make the
measurement results more precise. All these features show that the system has a potential future in the hydrogen content measurement in metallurgical enterprises.

![Figure 8. The relation curve of temperature and P_{H_2}](image)

ACKNOWLEDGMENT

This work is sponsored by the National Natural Science foundation of China (51074038) and Research Funds for the Central Universities of China (N100602008).

REFERENCES

TABLE I. THE CURVE-FITTING FUNCTION RESULT OF CALIBRATION

<table>
<thead>
<tr>
<th>Temperature Range (℃)</th>
<th>Fitted Function</th>
<th>Error Sum Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-160</td>
<td>$T_o=1.17T_i+1.10$</td>
<td>2.334</td>
</tr>
<tr>
<td>161-230</td>
<td>$T_o=0.93T_i+32.64$</td>
<td>2.017</td>
</tr>
<tr>
<td>231-460</td>
<td>$T_o=0.83T_i+52.55$</td>
<td>1.983</td>
</tr>
<tr>
<td>461-620</td>
<td>$T_o=1.12T_i+78.51$</td>
<td>1.322</td>
</tr>
<tr>
<td>621-890</td>
<td>$T_o=1.05T_i-23.09$</td>
<td>2.121</td>
</tr>
<tr>
<td>891-1024</td>
<td>$T_o=0.0001T_i^2+0.59T_i+294.02$</td>
<td>1.519</td>
</tr>
</tbody>
</table>

Published by Atlantis Press, Paris, France. © the authors