On-line Detection Method of Quality Defects in Manufacturing Process based on Wavelet Finite Element

Bin Zeng1,a, Yuxi Wang2,b*, Quanming He3,c and Xiaoli Jiang4,d

1School of Art Design, Humanities & Tea Culture, Zhejiang A & F University, Lin’an, Zhejiang, China
2Jiyang College of Zhejiang A & F University, Zhuji, Zhejiang, China
3Lin’an Longyan Information Engineering Co., Ltd., Lin’an, Zhejiang, China
4School of Forestry and Bio-technology, Zhejiang A & F University, Lin’an, Zhejiang, China

azhengbing1976@126.com, b112306207@qq.com, czb@microgrid.com.cn, d21543896@qq.com

Keywords: Lifting Wavelet; Adaptive Finite Element; Modal Parameters; Stress Wave

Abstract. In this paper, researchers use a wavelet-based solution to enhance the adaptive finite element method flaw inherent frequency beam, and study to conclude a particular state and the intrinsic link between the modal parameters, and establish a precise qualitative and quantitative identification based on the establishment of internal defects lifting wavelet adaptive format FEM model, accurate identification of internal defects in the category, location, size and other qualitative and quantitative. Defecting detection technology will be applied to the adaptive wavelet lifting scheme based on the finite element method quality manufacturing process and have achieved good experimental results.

Introduction

In 1992, American R. J. ROSS and some others stress wave detection technology to identify the plate, in 19971, and some others stress wave 144 0.025x0.038xO.508m stakes (U.S. southern pine made) were detected, and measured data regression analysis, draw the correlation between stress wave propagation velocity and the degree of decay stakes 2. Some others studied the application of vibration stimulus-response detection technology to detect preservative treated wood3. Literature studied the dynamic characteristics of timber damage location detection method will be applied based on vibration4. Yang Huimin and some others changes the attenuation of ultrasonic energy frequency components characterization methods timber defect information, by using a variety of defects in the wood pores comparative study to determine the spectral analysis method variation of pore size of defects and holes number, but its location on the distinction between obvious defects5. M. E.Tiitta and some others studied the application of Bayesian methods, KNN and the neural network classifier to analyze the sound - ultrasonic (AU) to detect the validity of decaying wood6. In literature, modal analysis of finite element method will be introduced into the timber in the past, FFT through experimental modal analysis results fit, and this finite element simulation method provides the feasibility of the application in the detection of defects in wood material theory7. Literature the composition and distribution of the different technologies in terms of detection of stress waves inside the timber spectral analysis8. Literature designed a timber-based non-destructive testing Labview virtual instrument system9. Literature using wavelet packet decomposition can accurately detect the ultrasonic signal into different frequency band range, andn extract an amount of change of energy in different frequency bands 10. Test shows the amount of change of the signal energy in a defective specimen has significantly different specific band 11, and the next step for the application of pattern recognition methods, such as neural networks to identify the defect type specimen, provides an ideal feature vector12.

In the above\textbackslash detection of relevant research literature, this paper mainly detects the wood outline, the current domestic and international timber carrying wooden material defect identification type of defect
detection, and defect location cannot be achieved with the quantitative detection. While carrying wood
materials and quantitative detection of defect location, they cannot achieve the type of defect detection, which
not only affects the efficiency of detection, and detection of wasted resources, but more important is that the
development and promotion of industrialization are not conducive to the practical application of research
results and the actual product.

On-line Detection Method of Quality Defects in Manufacturing Process based on Wavelet Finite
Element

This paper introduces the leading precision of the real small defects recognition methods[13], in order to
detect defects in timber identification, introduce some ways to solve the problem of inappropriate, the use of
leading technology[14] to upgrade its technology architecture, and cutting-edge research methods currently
testing field[15] combining domestic timber, the identification methods used in the manufacturing process of
wood processing line detection.

(1). Structural identification unit based on lifting scheme wavelet defects

Specific steps:
Consider timber from the perspective of internal defects caused by linear elastic fracture mechanics topical
additional flexibility to construct wavelet defect identification unit. References [16] the method introduces the
method which was constructed by Sweldens[17] in 1996 to enhance the approach adopted in the time domain
to construct a class of wavelet(Lifting Scheme Wavelet Transform), structure based on wavelet lifting scheme
wavelet thin curved beam element and unit.

The similar literature[17] can be introduced on the basis of the lifting scheme wavelet analysis in the literature
[15], this paper proposed an algorithm to obtain a second generation wavelet space element stiffness
matrix \tilde{k}_e, \tilde{k}_x. With the conversion formula $k_e = T^T \tilde{k}_e T$ converted into physical space[14]. Then using the
above method to construct the other scale lifting scheme wavelet unit, lifting scheme wavelet finite element thus
researchers obtained with conventional finite element calculation has the same format.

(2). Adaptive wavelet lifting scheme based on finite element calculation upgrade

Specific steps:
1) Constructed on the basis of the lifting scheme wavelet defect recognition unit on the natural frequency of
the beam is introduced to solve the defects based on lifting wavelet adaptive finite element method format,
According to the calculation in response to the defect before the three natural frequencies[15], for solving the
dynamic characteristics of the wood beams of internal defects, defects in the beam to get the essence of a sign
on its first three natural frequencies reflect, get the essence of signs defects beam on its first three natural
frequencies reflect.

ii) Based on Laplace wavelet-based modal precise identification [16] observed defect analysis cuts through
the excitation frequency response characteristics of the measured beam defects, defects cantilever beam to
obtain the first three natural frequencies (f1, f2, f3)

iii) Enhance the adaptive coupling calculation: References [16, 17 theory, based on the references [17]
proposed an adaptive algorithm to complete the upgrade to enhance the adaptive coupling calculation.

Which enhance the adaptive coupling calculation process C0 unit finite element solution Fang Chenggang
matrix decoupling conditions for:

By introducing the proposed two vanishing moments stiffness matrix K^e decoupling conditions:
low-resolution approximation space and detail the space between coupling term $K_{i,j}^{0,k}$, $K_{i,j}^{k,0}$; coupling terms
between different spatial scales details $K_{i,j}^{m,k} (m \neq k)$
By constructing non-vanishing moments properties interpolating wavelet
(3). Intelligent classification of various defects
As a basis functions to construct a finite element approximation space process, wavelet enhances the
low-resolution spatial resolution by increasing the detail of space to space, but there are coupling units in the
space between the low-resolution approximation and detail details different scales of space and the space of
the coupling term. Above conditions can eliminate the coupling term decoupling, smoothing approach to
achieve the separation and detail information.
Enhance the adaptive coupling calculation process, lifting scheme wavelet adaptive finite element analysis
model can be created directly obtain the corresponding \(f_i \) of the three equivalent stiffness on the
relative position of the curve, the position of internal defects diagnosed timber, depth. Fig. 1 can be determined
by its intersection A timber relative position of internal defects and defect equivalent stiffness (Corresponds to
the relative geometry – Depth)

![Defect equivalent stiffness](image)

Fig. 1 Calculated to Enhance the Adaptive Process Coupled Three-line Diagnosis Wood Interior Defect Location, Depth
However, according to the above process diagnostics to determine the relative position of the timber
internal defects and defect equivalent stiffness, equivalent stiffness corresponding defect relative geometry only
and the total height of the depth of the measured component parallel to the beam(literature [15]), the depth of
one-dimensional feature quantity inside the timber does not reflect the particular geometry of the
three-dimensional defects, it is necessary to solve this problem while adding the identification of various types
of defects.
This paper appoints its own lifting scheme wavelet transform (second generation wavelet transform) based
on analysis of changes in the energy spread function defects, in order to enhance the adaptive coupling
calculation process, the mutant signal decomposition, reconstruction and de-noising, identify the type of defect
energy change according to the defect, and build defect propagation energy changes associated with the defect
type mathematical model. For a variety of defects using neural network classification algorithm intelligence

Summary
In the same experimental conditions described herein format based on lifting wavelet adaptive finite element
method and the literature’s methods[8] with the literature [2,3,10] the method is verified by comparing this
study with leading technology and efficiency[13]. In the actual processing of timber production process, the
test results and the real and artificial logs or timber internal section comparison validate that the method has
good accuracy and validity. In the actual wood processing of enterprises using logs, timber, plywood, specimen trees and field tested in vivo binding complex from a more realistic situation, the greater the level of testing the validity and completeness of the theory, and further narrow the theory and practical application, the product distance. In summary, the use of the line defect detection technique based on lifting scheme wavelet adaptive finite element method to the actual quality of the wood timber manufacturing process, achieved good experimental results.

Acknowledgement

This work was supported by Zhejiang Science and Technology Department Project, No.2012C21087, 2014C32G2100058, 2013R30003.

References

[5] Senming Guo, Status and Development of particleboard production line testing techniques, Plywood Communications, 2004(8), 8-10

[12] Lihai Wang, Huadong Xu, Zaixing Yan, Jianxiong Lv, Xuechun Yang, Cilin Zhou, Affect the quantity and distribution of the stress wave sensors to detect the effect of wood defects, Forestry Science, 2008,44(5):115-121
[13] Wei Qi, Lihai Wang, Based on the type of research to identify defects in the internal timber WNN, Forestry Science, 2006, 42(8):63-68

