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Abstract. To realize the optimal operation of modern power systems, optimal power flow (OPF) 
serve as the core mathematical model. Due to the nonlinear and nonconvex nature of AC power 
flow, the solving method of OPF is always attracting ever since its birth. With the development of 
modern convex optimization developed recently, some novel solving methods have been proposed. 
To clearly depict the nonconvex characteristics of OPF, two types of AC power flows were 
reviewed as the theory basis. Then the convexificationmethods, like line programming, quadratic 
relaxation and so on, were summarized. Finally, the research trend in convexification of AC OPF is 
given. 

Introduction 
Power systems are usuallyrequired to operate at least cost or line losses [1].In the viewpoint of 

mathematics, the operation problem of apower system could be formulated as a here and now 
nonlinearoptimization problem or called optimal power flow problem(OPF), which determines an 
equilibrium point correspondingto all operational variables, such as power outputs ofgenerators, 
shunt capacitor/reactors, voltage values. 

An OPF problem optimizes an objective function constrainedby many operational, physical and 
security constraints, througha set of control variables, as shown in (1). 
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where u represents the decision variables, x stands for the environmental variables, f(u, x), g(u, x) 
and h(u, x) are the objective function, equality constrains and inequality constrains.  

Lotsof researchon OPF has been done since Carpentier’s first formulation in 1962 [1-3]. The 
foundation model in OPF is power flow equations, i.e. the equality contains in (1). These equations 
use the electrical properties of thetransmission network to relate the real and reactive power injected 
at each bus to the voltagemagnitude and voltage angle at each bus in a power system. Based on the 
AC power flows integrated to the OPF models, these models could be classified as bus injection 
optimal power flows (BIOPF) and branch line optimal power flows (BLOPF). 

The classification of control variables, state variables, constrains and objective functions in 
deterministic OPFs have been well studied in [2]. The main difficulty in solving AC OPFs lies in 
the non-convexity of power flow equations. The convexity plays an important role in the solving 
methods robustness, existence of equilibrium in power market and so on. 

With modern convex optimization well developed in the past ten years, more and more novel 
convex relaxation methods for AC OPFs are coming forth. These methods [4-15] could be classified 
as linearization and quadratic relaxation based on the relaxed model they deployed.  

This paper is organized as follows. The bus injection and branch flow models are introduced in 
Section.2. The convexfication of BIOPF is presented in section 3. Then section 4 reviews the 
convexfication methods for BFOPF. And the conclusions are given in Section.5. 

2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE 2015) 

© 2015. The authors - Published by Atlantis Press 297



AC Power Flow Formulation 
The power flow equations are based on the electrical properties of thetransmission network to 

relate the real and reactive power injected at each bus. These equations are the integration of the 
Kirchhofflaws on voltages and currents, the power definition in termsof voltage and current and the 
power balance at each bus. 

Based on the difference of power flow formulation, the most widely deployed models in power 
flow analysis could be concluded as bus injection flow and branch flow [4]. The above models are 
both self-contained, which means one could model the power flow by only branch variables or only 
nodal variables. Then the equivalence between these models is also demonstrated in [4]. 

Bus injection flow model 
The bus injection model is the standard model for powerflow analysis and optimization, which 

has been well developed in most commercial software packages. Its most outstanding characteristic 
is its focus on bus voltage and angle, while indirectly representing the power flow on each line [5]. 

Within a connected power network graphic G=(N, E) , where N:={0,1,…,n} ,E⊂N×N and n is 
the number of buses, a(n+1)× (n+1) admittancematrix Y was introduced as follows: 
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                                                     (2) 

where i~j, i≠jrepresents a line in E. Further, the graphic G is undirected and Y is symmetric but not 
necessary Hermitian. 

Then the bus injection flow is formulated as: 
Kirchhoff law:I=YV     (3) 
Power definition:Si=ViI* 

I ,i∈N.                                          (4) 
Power balance:si=-Si,i∈N.                                                (5) 

where Vi, IiandSi are the complex voltage at bus i, complex current andcomplex power injections 
from bus i to the reset of the networks; siis the complex power absorptionat bus i(load minus 
generation). Obviously, the power flow on each line is not formulated. 

As shown in above model, the state variables are only voltage magnitude and voltage angle at 
each bus{V, s}, the line flow are output variables as shown in the following functions[6]: 

2 cos( ) sin( )ij ij i ij i j i j ij i j i jp g V g VV b VVθ θ θ θ= − − − − (6) 
2 cos( ) sin( )ij ij i ij i j i j ij i j i jq b V b VV g VVθ θ θ θ= − + − − − (7) 

where pij and qij denote the active and reactive power flow online i~j∈E, respectively; θi is the 
voltage angle at bus i;bijand gijare the conductance and the susceptance of line i~j∈E, respectively. 

The rectangular form of (6)-(7) could be represented as following: 
2 2( ) ( ) ( )ij ij i i ij i j i j ij j i i jp g e f g e e f f b e f e f= + − + − − (8) 
2 2( ) ( ) ( )ij ij i i ij i j i j ij j i i jq b e f b e e f f g e f e f= − + + + − − (9) 

where ei=Vicos(θi) and ei=Visin(θi). 
Then the other integrated kind form of Kirchhoff law(3) and power balance (5) could be 

represented as following: 

~
( ) 0,i ij ij

i j
s p jq i+ + = ∈∑ N (10) 

Then (8)-(10) is the other kind form of bus injection flow. 
Branch flow model 
In the branch flow model, a (n+ 1) ×mincidence matrixCrepresenting the network topology could 

be defined as following, where m is the number of branches: 
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1 if line leaves node 
1 if line enters node 

0 otherwise
ie

e i N
C e i N

∈ ∈
= − ∈ ∈



E
E                                          (11) 

where e represents one line belongs to the set of lines E. 
Contraryto bus injection flow, Gin branch flow is a directed graph. Then the Kirchhoff law, 

power definition, and power balance related to branch flow could be modeled as following [4]: 
Kirchhoff law: 1 t−I = Z C V                                          (12) 

Power definition:
* , ( , )ij i ijS V I i j= ∈E                                       (13) 

Power balance:

2

: :
( | | ) ,j ij ij ij jk

i i j k j k
s S z I S j

→ →

= − − ∈∑ ∑ N
                       (14) 

where zij is the impedance of linei~j, Z:=diag(zij, i~j∈E),Iijand Sijare the complex current and 
complex power from busto busj. 

Then the power flows in the network G could be represented by (12)-(14) with set of variables 
{S, V, I,s}. Compared with the bus injection power flow, the branch flow needs more variables, as 
complex current and power on each line, to representtheelectrical properties in a connected graphic. 

Convexification of bus injection optimal power flows 
As shown in above AC power flow equations, due to the power definition, both bus injection 

andbus power flow models are both nonlinear and nonconvex, resulting in the nonlinear and 
nonconvex nature of most AC OPF problems. Then in this part the convexification in 
BIOPFisreviewed.The most widely deployed methods in BIOPF convexification are linearization 
[7-15], conic relaxation[16-21], semi-definite relaxation[22-24]and so on. 

LinearizationRelaxation 
The basic idea of linearization of a multivariate nonlinear function is based on Taylor's series 

expansion as following [7-8]: 
'

0 0 0( ) ( ) ( )( )f x f x f x x x≈ + − (15) 
Then the nonlinear power flow equations are approximately represented by a fixed point x0and 

its corresponding first order derivation, and this method is well deployed in linearizedpower flow 
analysis[2], outer approximation[7]. This method is always named as sensitive analysis.As shown in 
(15), the approximationprecision of linearized techniques applied in BIOPF depends on the fixed 
point x0.It is not applicable when the decision space of {V} in bus injection power flows varies 
within a large range, and single point linearizationmethod mightobtain infeasible solutions of the 
original problem [2,6].Traditionally, this method was deployed to solve the security constrained 
OPFs [2], nowadays it has also been applied to model the boundary load flow, affine load flow and 
OPFs under interval injection uncertainty [8-10]. 

Another popular way to linearize the power flow equations in OPFs is linearized 
decoupledpower flow (including DC power flow), which means the voltage magnitude is fixed and 
only voltage angle is treated as decision variables[2].As this method could only be applied when 
line conductances are negligible, phase angles across branches are small enough and voltage 
magnitudes are close to unity anddo not thus affect real power flows[2], this method could only be 
applied under limited scenario, i.e., power market[10], transmission networks operation 
optimization[11].Recently, a linear-programming based model which incorporates reactive power 
and voltagemagnitudes in a linear power flow approximation was proposed in [12]. However, this 
method could not be directly integrated into the AC OPFs. 

As show in (3) and (12), the power definition resulting bilinear(eiej,fifj,eifj,ejfi) or multi-linear 
terms(ViVjcos(θij), ViVjsin(θij)) in the line flowequalityconstrains(6-9) and the Kirchhoff law is linear 
in both models.To linear these nonlinearterms, two novel methods have been proposed recently.The most 
widely used method to reformulate the multi-linear terms iscalled McCormick inequality, which means the 
multi-linear term is represented by its convex hull.[6,13]Take the eiej as an example, the McCormick 
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inequality for it could be represented as following: 
min, min, min, min,
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whereemin,iandemax,i are the minimum and maximum boundary of ei.Since the McCormick 
inequality couldonly be applied within a narrow range, it is always deployed to formulate the under 
estimationproblems under spatial branch and bound (s-BB) or alpha branch and bound (α-BB) 
algorithms for global non-convex optimizationproblems [14]. 

With additional binary variables introduced, when the rectangle form bus injection flow model 
(8)-(10) is adopted, the authors in [15] proposed areformulation method based on SOS-2 relaxation 
to linearize the bilinear terms, further the load characteristics are also taken into consideration. 
While when the polar form bus injection flow model (6)-(7) is adopted, the cosine and sine 
functions should also be approximated, and the approximation method could be found in [6]. 

Quadratic Relaxation  
Power flow equations are quadratic and hence OPF can be formulated as a quadratically 

constrainedquadratic program (QCQP) [6]. Unlike the linearization relaxation, the power flow 
nonlinear nature is preserved by introducing conic [16-21] or semi-definite constrains[22-24]. 

To ease our expression, the QCQP model of OPFs was shown as following [3]: 
0min

. . , 1,...,M

n

t

t
m ms t b m

∈

≤ =
C

V C V

V C V
V (17) 

If Cm, m=0,1,…,M∈Sn are all positive semidefinite, then (17)is a convex QCQP. With an 
auxiliaryHamiltonrank-1 matrix W:= VVt, (17) could be reformulated as following: 

0min trace( )
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0
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C W
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(18) 

Traditionally, this approach is called lifting. 
Conic Relaxation  
To our best knowledge, [16] was the early bird in applying conic relaxation to solve the BIOPF. 

The conic relaxation was firstly applied to overcome the ill condition in radial networks [16], and 
was deployed to study the static voltagestability analysis in radial networks for further study [17]. 
The line flow equations(6)-(7) could be reformulated as following: 

2
i

ij ij ij ij ij ij
vp g g M b N= − − (19) 

2
i

ij ij ij ij ij ij
vq b b M g N= − + − (20) 

cos( )ij i j i jM VV θ θ= − (21) 

sin( )ij i j i jN VV θ θ= − (22) 
22 , 0i i iv V v= ≥ (23) 

With the additional constrains shown in (21)-(23), this reformulation is exact in both radial and 
mesh networks. 

Equality constrains (21)-(23) are nonlinearand the feasible region of (19)-(23) is still non-convex. 
Then the rotate cone is deployed to relax constrains (21)-(22): 
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2 2 2ij ij i jM N v v+ ≤ (24) 
Then the feasible region was expanded from the edge of the cycle to the full cycle.The angle 

information between the additional variables was omitted. Since the conic relaxation was deployed 
to represent the static electrical properties of thedistributionnetworks, the conic relaxation (19), (20), 
(23), (24) could not bedirectly applied to transmission networks OPFs [18]-[19], and the following 
constrains should be integrated: 

1tan ( )ij
i j

ij

N
M

θ θ− = − (25) 

As (25) is nonlinear, an iterative procedure based on Taylor’s series expansion was proposed to 
linearize equation (25) [20].What’s more, constrain (25) was preserved in the later work [21], and 
the nonlinear model was solved by interior-point method. Then the feasible region of 
SOCP-BIM-OPF with respect to bus injection power equationscould be represented as following: 
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(26) 

Semi-definite Relaxation  
As shown in (19), it is a natural way to omit the last two nonconvex constrains in QCQP-OPF 

model, and only a linear model is obtained. However, by relaxation the positive constrain W 0, the 
relaxationwould be nonsense. And retain the W  0, we could obtain the following SDP-BIM-OPF 
[19]: 

0min trace( )
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(27) 

As far as we know, the SDP-BIM-OPF was firstly introduced in relax the bun injection power 
model by [19]. The premises for exactness of SDP-BIM-OPFare first studied in [22] with 
primal-dual SDP solving methods, and a heuristic recovery method is also proposed for the obtained 
rank-2 solutionsbased on IEEE-test systems similar to the SDP relaxation applied to the QCQPs 
[23]. 

The main difficulty of the exactness of SDP-BIM-OPF is how to hold the rank-1 constrain of 
W.Further based on Theorem 3 provided in [23] the rank-1 constrain of W could be represented by 
the following angle cycle regulation conditions: 

~
( ) 0mod 2i j

i j C
V V π

∈

∠ −∠ =∑ (28) 
Since W is dense in (27), it would increase the computing cost significantly. Exploiting graph 

sparsityto simplify the SDP relaxation of OPF is first proposed in [24]. 
Finally, the relationship between conic relaxation and semi-definite relaxation could be found in 

[3]. 

Convexification of branch injection optimal power flows 
Since the branch power flow was usually deployed in distribution networks, there are only 

limited two kinds of methods to reformulate the BFOPF: linearizationmethod and conic relaxation 
method. As the linearization method is much alike with the linearization techniques deployed in the 
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BFOPFs, we would not give the summary here and only the conic relaxation techniques are 
depicted.  

As shown in (12)-(14), the feasible set of BFOPF is complex set. With the following angle 
relaxation technique, we could transform the complex set to real set [3]. 

:( , )
,i ij ij ij jk

k j k E
P P r l P j N

∈

= − − ∀ ∈∑ (29) 

:( , )
,i ij ij ij jk

k j k E
Q Q x l Q j N
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= − − ∀ ∈∑                                 (30) 

2 22( ) ( ) , ( , )j i ij ij ij ij ij ij ijv v r P x Q r x l i j E= − + + + ∀ ∈ �(31) 
2 2
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v
+
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As shown in (29)-(32), the only nonlinear and non-convex equal constrains are (32) for each line. 
If (32) is discarded, a linearized BFOPF could obtained. But the obtained solution would be 
nonsense, as it could not meet the physical laws in power networks. Then the following rotated 
conic constrain is introduced as following [25]: 

2 2

, ( , )ij ij
ij

i

P Q
l i j E

v
+

≥ ∀ ∈ (33) 

And this method was firstly proposed for radial networks, and the exactness premise for the 
relaxation was also proposed [25]. However, this relaxation could not be hold when applied to mesh 
grids. So a further angle recovery strategy was proposed with virtual phasorshifter at each line was 
proposed in [26]. However, this strategy is much more empirical, and should be further studied. 

Conclusion  
This paper presents relevant research work applyingconvexificationtechniques for solving the 

ACOPF problem. It clearly depicts the difficultiesof solving ACOPFs by depicting the widely 
deployed bus injection flow and branch flow. Then the convexification techniques for both BIOPFs 
and BFOPF were surveyed and discussed. As much more concerns are paid to distribution networks 
with increasing penetration of distributed energy resources, the conic relaxation technique for 
BFOPFscould be more attractive. 
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