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Abstract

A novel fuzzy rough granular neural network (NFRGNN) based on the multilayer perceptron using back-
propagation algorithm is described for fuzzy classification of patterns. We provide a development strategy
of knowledge extraction from data using fuzzy rough set theoretic techniques. Extracted knowledge is
then encoded into the network in the form of initial weights. The granular input vector is presented to the
network while the target vector is provided in terms of membership values and zeros. The superiority of
NFRGNN is demonstrated on several real life data sets.

Keywords: Granular computing, fuzzy reflexive relation, fuzzy rough sets, rule based layered network,
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1. Introduction

Granular Computing (GC) is a new information-
processing paradigm being developed in the past few
years. It recognizes that precision is an example in
modeling and controlling complex systems. An un-
derlying idea of granular computing is granulation
of universe. A granule normally consists of patterns
that are grouped together by suitable similarity mea-
sure (Ref. 1). When a problem involves incomplete,
uncertain, and vague information, it may be difficult
to differentiate distinct elements and one may find it
convenient to consider granules for its handling.

In general human reasoning and perception are
somewhat fuzzy in nature in the sense that their
boundaries are not precise and the attributes they
can take are granules. Hence, to enable a system
to tackle real-life ambiguous situations (Ref. 2) in a
manner more akin to humans, one may incorporate
the concept of granules into the neural networks, a
biologically inspired computing paradigm. Zhang

et al (Ref. 21) described granular neural networks
using fuzzy sets as their formalism and an evolu-
tionary training algorithm. One of the neuro-fuzzy
systems for classification, named fuzzy neural net-
work, was developed by Pal and Mitra (Ref. 3).
As part of determining the initial weights, Baner-
jee et al. (Ref. 5) described a knowledge based net-
work, where knowledge is extracted from data in
the form of decision rules using rough set theoretic
techniques. Recently, fuzzy sets have been inte-
grated with neural networks to simplify the knowl-
edge representation in a neural network (Ref. 6).
Several studies have been made combining fuzzy
sets (Ref. 7) and rough sets (Ref. 8). Many relation-
ships have been established to extend and integrate
the underlying concepts of these two methodologies
to deal with additional aspects of data imperfection,
especially in the context of granular computing. The
main purpose of fuzzy and rough hybridization is to
provide high degree of flexibility (Ref. 9), robust so-
lutions (Ref. 10), and handling uncertainty (Ref. 11).

International Journal of Computational Intelligence Systems, Vol. 4, No. 5 (September, 2011), 1042-1051

Published by Atlantis Press 
      Copyright: the authors 
                   1042



Avatharam Ganivada and Sankar K. Pal

We use the theory of granulation structures in
fuzzy rough sets (Ref. 12, 13) based on fuzzy reflex-
ive relation, defining the dependency factors of all
the attributes w.r.t. each decision class in a decision
table. Fuzzy-rough sets based on fuzzy reflexive re-
lation provide a means by which discrete or real-
valued noisy data can be effectively reduced without
any threshold values for data analysis. The granu-
lation structure produced by an fuzzy T-equivalence
class provides a partition of the universe. Its inten-
sion is to approximate an imprecise concept in the
domain of universe by a pair of approximation con-
cepts, called lower and upper approximations. These
approximations are used to define the value of pos-
itive degree of each object and all the positive de-
grees are used to determine dependency degree of
each conditional attribute. The syntax of the depen-
dency degrees is to define the initial weights of the
network.

In this article, we have made an attempt to in-
tegrate fuzzy rough sets with a fuzzy neural net-
work for designing a new application of GC, namely,
the development of a three layered novel fuzzy
rough granular neural network (NFRGNN). It may
be noted that the network knowledge encoding pro-
cedure, unlike the most other methods (Ref. 5, 6),
involving appropriate number of hidden nodes is de-
termined by the number of decision classes. The
dependency factor of each conditional attribute, and
average value of dependency factors of all the con-
ditional attributes w.r.t. each decision class are en-
coded between the nodes of input and hidden layers,
hidden and output layers, respectively, in the net-
work as initial weights. The components of the input
vector consist of membership values to the overlap-
ping partitions of linguistic properties low, medium
or high corresponding to each input feature. This
provides a scope for incorporating granular informa-
tion in both the training and testing phases of the net-
work. It increases robustness of the network in tack-
ling uncertainty. Performance of the network is mea-
sured in terms of percentage accuracy and Macro
averaged measure. The characteristics of NFRGNN
have demonstrated with eight real life data sets and
compared with that of fuzzy MLP (Ref. 3), robust
fuzzy granular neural network (Ref. 4), and rough

fuzzy MLP (Ref. 5).

2. NFRGNN Architecture

In this section, we describe a NFRGNN architec-
ture based on multilayer perceptron using back prop-
agation algorithm. A three layered NFRGNN is
considered with the nodes of input layer consist of
the 3n-dimensional attribute values and the output
layer is represented by c-decision classes. The hid-
den layer nodes are determined based on decision
classes. Each neuron of the hidden layer is fully
connected to neurons in the next layer and in the
previous layer. The granular input vector is sup-
plied to the network by placing it at the neurons in
the input layer, the network outputs consist of the
activation values of the neurons in the hidden and
output layers. The input layer is composed of non-
computational units. Each such unit receives a sin-
gle input and distribute it to all the neurons in the
next layer via synaptic weights.

2.1. NFRGNN Back Propagation Algorithm

Input
D, a data set consisting of the training tuples
in the granular form and their associated tar-
get vector in terms of membership value and
zeros.

η , the learning rate

α , the momentum term

b = b j, bias b is a constant at each node j.

network, a granular feed-forward network.

Output
A trained neural network

Method

1. Initial weights are determined among
the nodes (units) of all layers in the net-
work by fuzzy rough sets based on fuzzy
reflexive relation;

2. While terminating condition is not
satisfied{
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3. for each training tuple
Propagate the inputs forward:

4. for each unit j of input layer {
5. O j = I j; here, the output of an input unit

is its actual input value.
6. for each unit j of hidden or output layer,

compute the net input of each unit j with
respect to the previous layer, i {

7. I j = ∑i w ji.Oi +b ; }
8. Apply logistic activation function to

compute the output of each unit j.
9. φ(O j) = 1

1+e−I j

Back Propagation:
10. for each unit j in the output layer, com-

pute the error {
11. Error j = (φ(O j).(1−φ(O j))) .(T j -

φ(O j));
12. for each unit j in the hidden layer, com-

pute the error with respect to the next
higher layer (output layer).

13. γ j = (φ(O j).(1-φ(O j))).
(
∑k Errork.w jk

)
;

}
14. for each weight wi j in network {
15. ∆wi j = (η .xi).γ j;

where η is network wise learning rate
parameter.

16. ∆wi j(k) = ((η .xi(k)).γ j(k)) +
(α.∆wi j(k−1)) ; }

17. for each constant bias b in network {
∆b = η .γ j;
b+ =∆b;} }

where α is a momentum parameter used to escape
local minima in weight space and k is a number
to denote an epoch (i.e., k-1 denotes the previous
epoch).

3. Input Pattern Representation in Granular
Form

In general, human minds can perform a wide variety
of physical and mental tasks without any measure-
ment or computation. Familiar examples of such

tasks are parking a car, driving in heavy traffic, and
understanding speech. Based on such tasks percep-
tions of size, distance, weight, speed, time, direc-
tion, smell, color, shape force etc occur. But a fun-
damental difference between such measurements on
one hand and perception on the other, is that, the
measurements are crisp numbers whereas percep-
tions are fuzzy numbers or more generally, fuzzy
granules (Ref. 14).

Fuzzy granule is formally defined as a group of
objects defined by the generalized constraint form
“X isr R ” where ‘R’ is constrained relation, ‘r’
is a random set constraint, which is a combination
of probabilistic and posibilistic constraints, ‘X’ is a
fuzzy set valued random variable which takes the
values low, medium or high. Using fuzzy-set the-
oretic techniques (Ref. 15) a pattern point x, belong-
ing to the universe U , may be assigned a grade of
membership with the membership function µA(x) to
a fuzzy set A. This is defined as

A = {(µA(x),x)}, x ∈U, µA(x) ∈ [0,1]. (1)

The π membership function, with range [0, 1] and
x ∈ Rn, is defined as

π(x,c,λ )=


2(1− ‖x−c‖

λ
)2, f or λ

2 6 ‖ x− c ‖6 λ ,

1−2( ‖x−c‖
λ

)2, f or 0 6 ‖ x− c ‖6 λ

2 ,
0, otherwise,

(2)
where λ > 0 is the radius of the π function with c as
the central point, and ‖ ‖ denotes Euclidian norm.
Each input feature Fj can be expressed in terms of
membership values to each of the three linguistic
properties low, medium and high as granules. There-
fore, an n-dimensional pattern can be represented as
a 3n-dimensional vector
−→
F i = [µlow(Fi1)(

−→
F i),µmedium(Fi1)(

−→
F i),µhigh(Fi1)(

−→
F i)..

....,µhigh(Fin)(
−→
F i)].

(3)

3.1. Choice of Parameters of π-functions for
Numerical Features

When the input feature is numerical, we use π fuzzy
set of Eq. (2) with appropriate parameter values for
center c and radius λ . These values are chosen as
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explained in the article of Pal and Mitra (Ref. 3).
These are used to express features of each input pat-
tern in terms of membership values to each of three
fuzzy granules low, medium, or high.

3.2. Class Memberships as Output Vectors

Consider a c-class problem domain such that we
have c-nodes in the output layer. Let the n-
dimensional vectors Ok j and Vk j denote the mean
and standard deviation, respectively, of the training
data for the kth class. The weighted distance of the
training pattern

−→
Fi from the kth class is defined as

Zik =

√
∑

n
j=1

[
Fi j−Ok j

Vk j

]2
, f or k = 1,2, . . . ,c,

(4)
where Fi j is the value of the jth component of the ith

pattern point. The membership of the ith pattern to
class ck, lying in the range [0, 1], is defined by

µk(
−→
F i) =

1
1+(Zik

fd
) fe

, (5)

where Zik is the weighted distance from Eq. (4),
and fd , fe are the denominational and exponential
fuzzy generators controlling the amount of fuzzi-
ness in the class membership. In the fuzziest case,
we may use fuzzy modifier contrast internification
(INT) from (Ref. 15) to enhance contrast within the
class membership to decrease the ambiguity in tak-
ing a decision.

3.3. Applying the Membership Concept to Target
Vector

The target vector at the output layer is defined by
membership values and zeros as shown in Eq. (6).
For the patterns belonging to a particular class, the
desired vectors of those patterns at the correspond-
ing class node are assigned membership values, and
the rest of the class nodes are assigned zeros. For ith

input pattern, we define the desired output of the jth

output node as

d j =

 µINT ( j)(
−→
Fi ), f or ith pattern at the

jthout put node,
0, otherwise.

(6)

4. Preliminaries in Granulations and
Approximations

The granulation structure used in rough set theory is
typically a partition of the universe. For preliminar-
ies of rough set theory, one may refer to (Ref. 8).

In the context of fuzzy rough set theory, fuzzy
set theory (Ref. 7) allows that objects belong to a
set, and couple of objects belong to a relation, to a
given degree. Recall that Eq. (1) defines a fuzzy
set in U . A fuzzy relation R in U is a mapping
U ×U → [0,1], where this mapping is expressed by
a membership function R(x,y) of a relation R. i.e., R
= {((x,y), R(x,y)) | (R(x,y)) ∈ [0,1], x ∈U , y ∈U }.
For each y in U , the R-foreset of y is a fuzzy set Ry
defined by Ry(x) = R(x,y), for all x in U .

In fuzzy rough set theory, the similarity of ob-
jects in U is modeled by a fuzzy reflexive relation R,
which is defined by

R(x,x) = 1, (reflexive),
for all x, y, z in U and a given T -norm, R is then
called a fuzzy T - equivalence relation. It may be
noted that fuzzy T - equivalence relations do not nec-
essarily display fuzzy T-symmetric relation and T-
transitive relation. In general, for a T - equivalence
relation R, we call Ry as the fuzzy T -equivalence
class (fuzzy equivalence granule) of y. The fuzzy
logical connectives and fuzzy T - equivalence re-
lations play an important role in the generaliza-
tion of lower and upper approximations of a set
in fuzzy rough set theory. Further details about
fuzzy logical connectives can be found (Ref. 13).
In this article, we use the Lukasiewicz implicator
(IL) from (Ref. 13) to calculate the lower approxi-
mation of each object of the concept. A mapping
I : [0,1]× [0,1] → [0,1] is defined by I(0,0) = 1,
I(1,x)= x, ∀x ∈ [0,1], where I is an implicator. For
all x,y ∈ [0,1], an implicator IL is defined as

IL(x,y)= min (1,1− x+ y).

4.1. Fuzzy Rough Sets

Hybridization of fuzzy sets and rough sets
has been addressed by several researchers
(Ref. 9, 10, 11, 12, 13, 16). The following two
principles were used to fuzzyfication of lower and
upper approximations of a concept in rough sets.
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• The set A may be generalized to a fuzzy set in U ,
allowing that objects can belong to a given con-
cept (i.e. subset of the universe) to varying mem-
bership degrees in [0, 1].

• Usually, ‘objects indistinguishability’is described
by means of an equivalence relation R in U in
Pawlak rough approximation. Instead of assess-
ing ’objects indistinguishability’in Pawak rough
approximation, we may measure their approxima-
tion equality represented by a fuzzy reflexive re-
lation R in generalized approximation space. As a
result, objects are categorized into classes or gran-
ules with ”soft” boundaries based on their fuzzy
reflexive relation to one another.

In fuzzy rough set analysis, an information system
is a couple (U,A ), where U = {x1,x2, ....,xm} and
A = {a1,a2, ....,an} are finite non empty sets of
objects and conditional attributes, respectively. In
this article, the values of conditional attributes can
be quantitative (real valued). A decision system
(U,A ∪{d}) is a special kind of information sys-
tem in which d (d /∈A ) is called a decision attribute
and it can be qualitative (discrete - valued). Based
on these values, the set U is partitioned into non-
overlapping fuzzy sets (called concepts) correspond-
ing to decision concepts Rd(Xk), k = 1,2,3, . . . ,c,
where each decision concept represents a decision
class. Each object xi in U is classified by decision
classes.

Let ′a′ be a quantitative attribute in A , we ex-
press the fuzzy reflexive relation Ra between any
two objects x, y in U w.r.t. an attribute ’a’ as

Ra(x,y)=



max
(

min
(

a(y)−a(x)+σak1
σak1

,
a(x)−a(y)+σak1

σak1

)
,0
)

,

i f a(x),a(y) ∈ Rd(Xk1),

max
(

min
(

a(y)−a(x)+σak2
σak2

,
a(x)−a(y)+σak2

σak2

)
,0
)

,

i f a(x) ∈ Rd(Xk1),a(y) ∈ Rd(Xk2),
and k1 6= k2,

(7)
where k1, k2=1,2, . . . ,c. For a qualitative attribute ′a′

in {d}, two methods are described as follows.

(i) Method I (Crisp case): Crisp way of defining
decision classes:

Ra(x,y) =
{

1, i f a(x) = a(y),
0, otherwise,

(8)

for all x, y in U . The crisp valued decision class
implies that objects in the universe U corresponding
to the decision equivalence granule will take value
only from the set {0, 1}. A fuzzy set A ⊆U can be
approximated only the information contained within
an attribute A by constructing lower and upper ap-
proximations of A w.r.t. crisp decision classes [x̃]Rd .

Generally, in real life problems, the data are ill-
defined with overlapping class boundaries. Each
pattern used in a fuzzy set A ⊆ U may possess
nonzero belongingness to more than one class. To
model such data we extend the concept of crisp de-
cision granule into fuzzy decision granule by inclu-
sion of fuzzy concepts to crisp decision granule. The
fuzzy membership values, lying in the range [0, 1],
of objects in the universe U w.r.t. each decision class
are defined as follows.

(ii) Method II (Fuzzy case): Fuzzy way of defin-
ing decision classes:

As we have discussed in Section 3.2, A decision
system contains c-decision classes of a decision at-
tribute. The mean and standard deviation of an n-
dimensional vectors are Ok j and Vk j, respectively, of
the data for the kth class in the given decision sys-
tem. The weighted distance of the pattern

−→
Fi from

the kth class is defined in Eq. (4). The weight 1
Vk j

from Eq. (4) is used to take care of the variance of
the classes such that a feature with less variance has
high weight (significance) in characterizing a class.
Moreover, when the value of all the features of a
class is same, the standard deviation will be zero.
In that case, we consider Vk j = 0.000001 such that
the weighting coefficient becomes high. When the
weighting coefficient is high, pattern membership
value is decreased, so does the initial weights. This
decrease does mean that the weights will converge
to a local minima within less number of epochs.

The membership of the ith pattern to decision
class ck is defined in Eq. (5). Note that, while defin-
ing a fuzzy decision attribute the value of fuzzifica-
tion parameters fd , fe is kept 1 throughout imple-
mentation for all the data sets. It gives the lower
membership value of patterns in its decision class.
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When the ith pattern
−→
F i has its own membership de-

gree in its decision class, the decision attribute be-
comes quantitative. Calculation of a degree of de-
pendency of each conditional attribute w.r.t. quan-
titative decision will be resulted in high computa-
tional complexity. For this reason, the quantitative
decision attribute could be made as qualitative deci-
sion attribute (like crisp case) by calculating average
membership degree of all the patterns within a de-
cision class and assigning it to all the patterns in a
decision class. So the average membership value of
ith pattern to the kth class ck is defined as

µ(Drk) =
∑

mk
i=1 µ(

−→
F ik)

|mk|
, f or r,k = 1,2, . . . ,c,

(9)
where |mk| indicates the number of patterns within
the kth class. For a qualitative attribute ’a’ ∈ {d},
the fuzzy decision relation is defined as

Ra(x,y) =
{

µ ′(Drk), i f a(x) = a(y),
µ(Drk), otherwise,

(10)

for all x and y in U . Where µ ′(Drk) is used to char-
acterize patterns belong to the same class (r = k)
with an average membership degree, and µ(Drk) is
used to characterize the patterns from other class
(r 6= k) with an average membership degree. A deci-
sion class is fuzzy valued implies that objects in the
universe U corresponding decision class would take
values only from the set [0, 1].

For the lower and upper approximation of a
fuzzy set A ⊆ U by means of a fuzzy reflexive re-
lation R, given fuzzy logic connectives: a t-norm
T , and an implicator I, we use the definitions given
in (Ref. 17),

(R ↓ A)(y) = infx∈U I(R(x,y),A(x)), (11)

(R ↑ A)(y) = supx∈U T (R(x,y),A(x)), (12)

for all y in U , where a fuzzy reflexive relation R is
used to measure the approximate equality between
any two objects in U . The fuzzy positive region can
be defined based on fuzzy B-indiscernibility relation
as, for y ∈U ,

POSB(y) =

(⋃
x∈U

RB ↓ Rdx

)
(y), (13)

for all y in U . The positive region of a fuzzy set is the
maximum membership degree with which a unique
class can be classified by fuzzy set. The above Eq.
(14) can be simplified as follows. For y in a fuzzy
set A which is subset of U , Rd(x) is either crisp set
or fuzzy set, the fuzzy positive region can be defined
as

POSB(y) = (RB ↓ Rdx)(y). (14)

The degree of dependency of d on the set of at-
tributes B⊆A is defined by

γB = ∑x∈U POSB

|U |
, (15)

where | | denotes the cardinality of the set U , and
the value of γ is 0 6 γ 6 1. We say a fuzzy set A⊆U
completely depends on B if γ=1. It may be noted
that initial weights in fuzzy case than crisp case of
the proposed neural network play significant role to
resolving the overlapping class fuzzy boundaries.

5. Network Configuration Using Fuzzy Rough
Sets

In this section, we first show how the decision table
can be used to explain the concept of granulation
by partitioning the universe and approximations of
that partition based on fuzzy rough rflexive relation.
Based on this principle the initial weights of the net-
work are determined. During training, this network
searches for the set of connection weights that cor-
responds to some local minima. It is to be noted
that there may be a large number of such minimum
values corresponding to various good solutions. If
we initially set weights of the network so as to be
near one such solution, the searching space may be
reduced and learning thereby becomes faster. The
knowledge encoding procedure is defined below in
brief.

5.1. Method

Let S = (U,A ∪{d}) be a decision table, with A =
{a1, a2, ......an} its set of conditional attributes, and
decision attributes {d}, where U ={x1, x2, . . . , xm}
its set of objects form c-classes and objects having
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labeled values corresponding to each n-dimensional
conditional attribute.

Knowledge encoding procedure:
Let us consider the case of feature Fj

for a decision table S. Inputs for ith rep-
resentative pattern Fi are mapped into cor-
responding a 3-dimensional feature space of
µlow(Fi1)(

−→
F i),µmedium(Fi1)(

−→
F i),µhigh(Fi1)(

−→
F i) by (3).

In this manner an n-dimensional attribute valued de-
cision table can be formed into a 3n-dimensional
attribute valued decision table. The following Steps
are applied to the decision table S.

Step 1: Obtain additional granulation structures us-
ing the fuzzy reflexive relation, defined in Eq.
(7), on each conditional attribute by generat-
ing fuzzy relational matrix.

Step 2: Use Step 1 to compute lower approxima-
tions, defined in Eq. (11), of each concept
for each conditional attribute w.r.t. decision
classes, defined in Eqs. (8) or (10), using
fuzzy logic connective (Lukasiewicz implica-
tor).

Step 3: Calculate the fuzzy positive region, defined
in Eq. (14), of each object for each condi-
tional attribute.

Step 4: Calculate the degree of dependency, de-
fined in Eq. (15), of each conditional attribute
corresponding to objects within the concept
w.r.t. each decision class (decision concept).
Then the resulting values are determined as
initial weights between nodes of the input
layer and the hidden layer.

Step 5: Calculate the average value of all the degree
of dependencies of conditional attributes cor-
responding to objects within the concept w.r.t.
each decision class (decision concept).Then
the resulting average values are encoded in the
form of initial connection weights between
nodes of the hidden layer and the output layer.

We proceed to description of the initial weight en-
coding procedure. Let the degree of dependency of

conditional attribute of a decision table S, for in-
stance, be γi, i ∈ A={a1, a2, . . . an}. Given c- de-
cision classes for a decision table S, for instance, be
{d1, d2, d3 ...... dc}. The weight wki between a input
node i and hidden node k is defined as follows.

γ
k
i =

∑x∈Udk
POSi(x)

|Udk |
, k = 1,2, ....c. (16)

Let βl denote the average dependency degree of each
concept w.r.t. decision class k, l= 1,2, ...c.

βl = ∑
n
i=1 γk

i
|n|

, k = 1,2, ....c. (17)

The weight wkl between hidden node k and output
node l is defined as βl

|k| .

6. Experimental Results

The proposed NFRGNN algorithm has been imple-
mented in C. The knowledge extraction procedure
and performance of NFRGNN are demonstrated on
several real life data sets in this section.

6.1. Data Sets

We describe different characteristics of several real
life data sets in Table 1.

Table 1. Data set characteristics.
Dataset # Patterns # Features # Classes Origin

Telugu vowel 871 3 6 (Ref. 18)

Sonar 208 60 2 UCI

GLASS 214 9 6 UCI

Image Segmentation 2310 19 7 UCI

SPECTF Heart 267 44 2 UCI

Letter Recognition 20000 15 26 UCI

Spam Base 4601 57 2 UCI

Web data 145 2556 5 (Ref. 19)

The speech data ”vowel” deals with 871 Indian
Telugu vowel sounds (Ref. 18). All the other data
sets like sonar, glass are taken from the UCI Ma-
chine Learning Repositorya, and the Web data set is
from (Ref. 19), where the task was to classify web
pages based on their content into one of several pre-
defined categories

ahttp://archive.ics.uci.edu/ml//datasets.
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6.2. Performance Evaluation Measure

In order to evaluate the performance of NFRGNN,
we have used the following performance measure.

6.2.1. Macro averaged f1 measure

Macro averaged f1 is derived from precision and re-
call (Ref. 20). The precision ( pk ),recall (rk) of a
class k are defined below.

pk =
# patterns correctly classified into class k

# patterns classified into class k
,

(18)

rk =
# patterns correctly classified into class k
# patterns that are truely present in class k

.

(19)
Then ( f1)k, the harmonic mean between precision
and recall, of class k is defined as

( f1)k =
2× pk× rk

pk + rk
, (20)

where ( f1)k gives equal importance to both precision
and recall. It is computed by first computing the f1
scores for each class(category) and then averaging
all these scores to compute the global means. The
value of Macro f1 lies between 0 and 1, and more
close the value of Macro f1 to 1 is the better classi-
fication of the data set.

6.2.2. Results

As mentioned earlier, in order to demonstrate our
proposed model, during learning, for the data sets
except Web, as shown in Table 1, we have selected
randomly 10% data from each representative class
for training set. In each case the remaining percent-
age (90%) of data is used as the test set. In case of
Web data, we have selected randomly 30% data from
each representative class for training set and the re-
maining percentage (70%) of data is used as the test
set since the number of attributes for the Web data
set is high. In our experiments, the parameters fd ,
fe in Eq. (4) were chosen as fd=6, fe=1 for Telugu
vowel data set. Similarly for other data sets, appro-
priate integer values were chosen. However, the mo-
mentum parameter α , learning rate η , and bias b tra-
verses a range of values between 0 and 1 and finally

we put α= 0.08, η=0.04 and b=0.9 in crisp case,
and α= 0.09, η=0.05, b=0.25 in fuzzy case for good
results. It is observed that NFRGNN converges to
local minima at 1000th epoch, 800th epoch, in fuzzy
case, crisp case, respectively, for Telugu vowel data
and SPECTF heart data. Similarly, in both fuzzy and
crisp case, it converges to local minima, at 2000th

epoch, at 3000th epoch, at 1000th epoch for glass
data, spam base data, Web data, respectively.

Knowledge extraction for Telugu vowel data:
A decision table S=(U,A ∪{d}) is used to rep-

resent train data. Data in the decision table is trans-
formed into a 3-dimensional granular space using
Eq. (3). We apply the knowledge encoding proce-
dure (described in Section 5) to the decision table S.
The resulting knowledge is encoded into NFRGNN
in the form of the initial connection weights. Then
the network learns in the presence of the training
data set. We present the initial connection weights
of NFRGNN in fuzzy case and crisp case for Telugu
vowel data in Tables 2 and 3.

Table 2. NFRGNN with initial connection weights in fuzzy case
for Telugu vowel.

Input to Hidden Layer(wki)
0.11 0.08 0.12 0.12 0.01 0.12 0.11 0.07 0.11
0.11 0.06 0.11 0.10 0.07 0.10 0.09 0.06 0.09
0.03 0.02 0.03 0.07 0.07 0.07 0.03 0.04 0.03
0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.16 0.15 0.16 0.21 0.16 0.21 0.17 0.16 0.17
0.02 0.02 0.02 0.05 0.01 0.05 0.06 0.02 0.06

Table 3. NFRGNN with initial connection weights in fuzzy case
for Telugu vowel.

Hidden Layer(w ji) to Output Layer (wkl)
0.017 0.017 0.017 0.017 0.017 0.017
0.014 0.014 0.014 0.014 0.014 0.014
0.006 0.006 0.006 0.006 0.006 0.006
0.001 0.001 0.00 0.001 0.001 0.001
0.029 0.029 0.029 0.029 0.029 0.029
0.005 0.005 0.005 0.005 0.005 0.005

Similarly, the same procedure of knowledge ex-
traction can also be applied to the other real life data
sets. It may be noted that NFRGNN with initial
weights in random real numbers case can be referred
to as fuzzy MLP (Ref. 3) where the initial weights
are real numbers between the interval [-0.5, 0.5]. Ta-
ble 4 shows the experimental results of NFRGNN
for all the aforesaid real-life data sets.
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Table 4. Experimental results for NFRGNN.

Dataset Initial Average Average Average Macro f1

name Weights Accuracy Precision Recall

Random 83.08 0.82 0.80 0.81

Telugu Crisp 85.38 0.85 0.82 0.83

vowel Fuzzy 85.90 0.86 0.83 0.84

Random 73.12 0.73 0.72 0.72

Sonar Crisp 74.73 0.75 0.74 0.74

Fuzzy 75.81 0.76 0.75 0.75

Random 62.63 0.56 0.55 0.55

Glass Crisp 63.68 0.57 0.55 0.55

Fuzzy 67.37 0.59 0.56 0.57

Random 93.33 0.93 0.93 0.93

Image Crisp 93.33 0.93 0.93 0.93

Segmentation Fuzzy 93.76 0.94 0.94 0.94

Random 78.66 0.65 0.59 0.61

SPECTF Crisp 80.75 0.70 0.59 0.61

Heart Fuzzy 82.01 0.74 0.62 0.64

Random 79.65 0.81 0.80 0.80

Letter Crisp 73.13 0.76 0.73 0.73

Recognition Fuzzy 80.70 0.82 0.81 0.81

Random 83.07 0.84 0.83 0.83

Spam base Crisp 88.00 0.87 0.86 0.87

Fuzzy 88.38 0.88 0.87 0.88

Web data Random 48.00 0.35 0.36 0.35

Fuzzy 57.00 0.73 0.48 0.50

Examining the experimental results from Table
4, for Telugu vowel data, initial weights in ran-
dom case, crisp case and fuzzy case, NFRGNN pro-
vides the significant accuracy of 83.08%, 85.38%,
85.98%, respectively. The optimal performance
evaluation measures of NFRGNN with initial
weights in random, crisp and fuzzy cases are 0.81,
0.83, 0.84, respectively. For all the other data sets
the corresponding figures can be found from the re-
maining part of the experimental results. An ob-
servation was seen that fuzzy MLP with fifty hid-
den nodes gives better result than NFRGNN where
weights in crsip case with twenty six hidden nodes
for letter recognition data. However NFRGNN
where weights in fuzzy case gives the superior result
than that of fuzzy MLP. It was seen that NFRGNN
with five hidden nodes (crisp case) is unable to clas-
sify the web data from all the classes. Hence these
results are not included in Table 4. The experimen-
tal results show that the performance of NFRGNN
(initial connection weights in both fuzzy and crisp
cases), in terms of percentage accuracy, macro av-

eraged f1 measure, is superior to fuzzy MLP (ini-
tial weights of NFRGNN in random case) for all
data sets. These figures of NFRGNN with initial
weights in fuzzy case indicate that the overlapping
between the input patterns of the classes are much
resolved than that of initial weights in crisp and ran-
dom cases.

The performance of our method is compared
with well known existing methods: one is ro-
bust fuzzy granular neural network (RFGNN)
from (Ref. 4) and other is rough fuzzy MLP (rfMLP)
from (Ref. 5), we apply on Telugu vowel data, as an
example. In rfMLP, Method I produces four reducts
combing all the 6 classes, and each reduct repre-
sents a set of six decision rules corresponding to 6
vowel classes. In Method II, we have considered one
reduct for each class representing its decision rule;
thereby generating six decision rules for six vowel
classes. The results of rfMLP with three layered
knowledge based network and RFGNN for Telugu
vowel at the end of 1500th epoch are presented in
Table 5.

Table 5. Recognition scores for FRGNN, rfMLP and NRFGNN.
Dataset Method Average Average Average Macro f1

name Accuracy Precision Recall

RFGNN 81.79 0.76 0.84 0.78

83.97 0.82 0.81 0.81

Telugu rfMLP 82.95 0.80 0.79 0.80

vowel (Method I) 82.69 0.81 0.79 0.80

83.08 0.81 0.79 0.80

(Method II) 83.08 0.81 0.80 0.80

NFRGNN 85.90 0.86 0.83 0.84

(Fuzzy Case)

For Telugu vowel data, the recognition scores for
RFGNN and rfMLP are 81.79% and 83.97% respec-
tively. In contrast, NFRGNN gives the maximum
recognition score of 85.98%. The optimal perfor-
mance evaluation measures of RFGNN, rfMLP and
NFRGNN are 0.78, 0.81, 0.84, respectively. Based
on these results, we can say that the performance of
NFRGNN (initial connection weights in fuzzy case),
in terms of percentage accuracy, macro averaged f1
measure, is superior to rfMLP and RFGNN. It was
observed that the time complexity of NFRGNN is
less than rfMLP and RFGNN for all the data sets.
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Finally, we can conclude that the difference among
the NFRGNN, rfMLP and RFGNN, as stated above,
is likely to be a statistical significant.

7. Conclusion

In this paper, we have presented the design of a novel
granular neural network architecture by integrating
fuzzy rough sets with multilayer perceptron using
back propagation algorithm. We have examined two
special types of granular computations. One is in-
duced by low, medium, or high fuzzy granules and
the other one is classes of granulation structures in-
duced by a set of fuzzy equivalence granules based
on a sequence of fuzzy reflexive relations. With re-
spect to classes of granulation structures, one can
obtain stratified fuzzy rough set approximations that
can be used to determine the dependency factors of
all conditional attributes to obtain initial weights of
our proposed network. The incorporation of gran-
ule concepts at input and initial weights stages, and
membership values at output stage of the conven-
tional MLP also helps the resulting NFRGNN to ef-
ficiently handle uncertain and ambiguous informa-
tion.

The performance of NFRGNN for fuzzy classi-
fication of real data sets is found to be superior to
rfMLP and RFGNN trained on the Telugu vowel
data, as an example. The NFRGNN architecture is
a useful application of granular computing to real
world classification problems.
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