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Abstract

In this article we examine to necessary and suffi-
cient optimality conditions for interval optimization
problems. We introduce a new concept of stationary
point for an interval-valued function based on the
gH-derivative. We show the importance the this
concept from a practical and computational point
of view. We introduce a new concept of invexity
for gH-differentiable interval-valued function which
generalizes previous concepts and we prove that it is
a sufficient optimality condition. Finally, we show
that the concepts of differentiability, convexity and
invexity for interval-valued functions based on the
differentiability, convexity and invexity of its end-
point functions are not adequate tools for interval
optimization problems.

Keywords: Interval optimization, sufficient condi-
tions, generalized convexity

1. Introduction

The stationary point notion for interval optimiza-
tion problems has been introduced in previous ar-
ticles. With these notions we can obtain necessary
optimality conditions only for some class of inter-
val optimization problems [15, 16, 19] or they are
proved under restrictive conditions (for instance,
comparable interval-valued functions)[11]. In these
notions very restrictive concepts of differentiabil-
ity for interval-valued functions were used. For
instance, Hukuhara derivative or derivative based
on the differentiability of the endpoint functions
1, 14, 15, 16, 17, 18, 19].

Here we introduce a new notion of stationary
point for interval-valued functions considering the
generalized Hukuhara derivative, which is the most
general concept so far.

Another main part in optimization theory is es-
tablishing sufficient optimality conditions. In the
literature we can find articles devoted on this is-
sue. In general the considered conditions are based
on the convexity or generalized convexity of the
endpoint functions of an interval-valued function
[1, 9, 14, 15, 16, 17, 18, 19]. We show that these
conditions are very restrictive. We introduce a new
concept of invexity for generalized Hukuhara dif-
ferentiable interval-valued functions and show that
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invexity is such that each stationary point is min-
imum. In addition we show that invex interval-
valued functions are conditions more adequate than
previous work.

2. The space of intervals and
interval-valued functions

We denote by K¢ the family of all bounded closed
intervals in R, i.e.,

Ke={la,a /e, a€Rand ¢ <@},

Given A = [g,a] € K¢, a and @ stand for the
lower and upper bounds of A, respectively. For A =
[a,a], B = [Q,ﬂ € K¢ and A € R we consider the
following operations

A+B=aa+[bb]=[a+ba+d],

(1)
[Aa,\a] if X >0, )
[A@, \a] if A <O.
From (1) and (2) we have —A = [—a, —a] and B —
A=B+(-4) [Q—E,E—g}. The space K¢ with
operations (1) and (2) is not a linear space since an
interval does not have inverse element and therefore
subtraction does not have adequate properties (see
[3, 13]).
More recently, Stefanini and Bede in [13] have
introduced the following difference between two in-
tervals.

Definition 1 (/13]) The generalized Hukuhara dif-
ference of two intervals, A and B, (gH-difference)
is defined as follows

)\'A)\[a,a]{

(a) A=B+C,
(b) B=A+ (-1)C.

A%HBC@{ or

This difference has many interesting new prop-
erties, for example A 6, A = {0} = [0,0]. Also,
the gH-difference of two intervals A = [a,a] and
B = [Q, 5] always exists and it is equal to (see
Proposition 4 in [13])

ASyuB = [min{g—b,a—g},max{g—b,a—g}} .
Give two intervals A = [a,a] and B = [b,b] we
have
A<XB<=ga<b and a<b;
A<XB<= A=< Band A # B;
A<B<=a<b and a<b.



The order relation < was initially introduced in [10]
and used in interval optimization problems, see [4,
7,8, 15, 16].

2.1. gH-differentiable interval-valued
functions

In this paper T denotes an open set in R and a
function I’ : T — K¢ will be called interval-valued
function. For each z in the domain we denote
F(z) = [f(z), f(x)] such that f(z) < f(z). The
functions f and f will be called, respectively, the
lower and the upper (endpoint) functions of F.

Based on the gH-difference, the following defini-
tion of differentiability for interval-valued functions
was introduced in Stefanini and Bede in [13].

Definition 2 ([18]) The gH-derivative of an
interval-valued function F : T — K¢ at xg € T
is defined as

F(l‘o + h) OgH F(Io)

F' =i .
(o) hs0 h

(3)

If F'(xg) € K¢ satisfying (3) exists, we say
that F is generalized Hukuhara differentiable (gH -
differentiable) at xo. We say that F is gH-
differentiable on T if F is gH -differentiable at each
point xg € T'.

In (3) the limits are taken in the metric space
(K¢, H), where H is defined by

H(A,B) =max{|la—b| , [a—b|}.

Next we give the following result which connects
gH-differentiability of F" and the differentiability of
its endpoint functions f and f.

Theorem 1 ([3]) Let F : T — K¢ be a function.
Then, F is gH-differentiable at x¢o € T if and only
if one of the following cases hold:

(a) f and f are differentiable at x¢ and

[min {i’(zo),?l(xo)} , nax {i’(ﬂco),?(xo)

)]

(b) the lateral derivatives [ (o), i:r(xo), f_(x0)

F'(20)

and ?;(:co) exist and satisfy [’ (z0) = ?/Jr(xo) and
f_,_ (z0) = ?l_ (x0). Moreover

F'(to)
{min {il (x0), (xo)} , TNax {f’ (z0), - (xo)}]

{min {ig_(:co),?;(xo)} , max {i;(mo%?:r(xo)}}

There are other concepts of derivative for interval-
valued functions which were used in interval opti-
mization: Hukuhara derivative (H-derivative [6])
and endpoint derivative (e-derivative). It well
known that if F'is H-differentiable then it possesses
the property that the diameter len(F(t)) (lenght of
F(t)) is nondecreasing as ¢ increases [2, 3, 13]. Thus
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H-derivative is a concept very restrictive. On the
other hand, the e derivative is based on the deriva-
tive of its endpoint functions of F.

Definition 3 Let F' : T — Ko be an interval-
valued function. We say that F is endpoint differ-
entiable (e-differentiable for short) if and only if the
endpoint functions f and f are differentiable.

We note that initially e-differentiability was intro-
duced as weakly differentiability [15].

We can clearly see that the gH-derivative is
a more general concept than the Hukuhara and
endpoint derivatives. On the other hand, both
Hukuhara and endpoint derivative are very restric-
tive as we show in the following example.

Example 1 ([{]) We consider the interval-valued
function F : R — K¢ defined by F(x) = A-x, where
A =11,2]. Clearly we can see that F is an extension
of a linear function to interval-valued context. From

(2) we have
{

We can see that the endpoint functions f and f
are not differentiable at t = 0 and so F is not H-
differentiable and it is not e-differentiable. However
F is gH-differentiable on R and F'(z) = A for all
z eR.

[x, 2]
[2x, x]

if x>0;

F(x) if x<0.

3. Interval optimization problems

Since the value F(z) is a closed interval, we need
to interpret the minimization meaning. The most
straightforward way is to invoke the order relations
between intervals. However, the order relation =
is not a total order in K¢c. So, we follow a simi-
lar solution concept as that used in multiobjective
programming problem to to define a minimum.

In [1, 4, 5, 9, 14, 15, 16, 17, 18, 19] the authors
considered the following concept of minimum for
interval-valued functions.

Definition 4 Let F' : T — K¢ be an interval-
valued function.

(i) x* € T is said to be a (local) minimum if there
does not exist x € T (30 > 0, x € B(xz*,6)NS) such
that F(x) < F(x*);

(i) x* € T is said to be a (local) weak minimum if
there does not existx € T (36 > 0, x € B(z*,5)NS)
such that F(x) < F(z*).

Clearly, if z* € T is minimum then it is weak
minimum.
3.1. Necessary conditions

Next we propose a new definition of stationary point
for interval-valued functions.



Definition 5 Let F': T — K¢ a gH -differentiable
interval-valued function and x* € T. We say that

*

x* is a stationary point for F if 0 € F'(z*).

Now is turn to present a new necessary optimality
condition.

Theorem 2 Let F be a gH -differentiable interval-
valued function. If x* is a local weak minimum of
F then x* is a stationary point for F'.

Proof Arguing by contradiction let us suppose that
0 ¢ F'(z*). Then, two cases are possible:

(i) F'(z*) CRY or (i) F'(z*) CR™.

We suppose (i) and let us consider each one of the
two different forms (a) and (b) to write F’'(z*) in
Theorem 1.

(ia) If F'(z*) C RT then f’(m*)7?/(m*) > 0 and so
f and f are increasing functions in a neighborhood
of z*. Considering ¢ small enough, we get

flx" —¢€) < f(z") and flz* —e) < f(a*).

So F(z* —¢€) < F(x*).
(ib) F'(z*) C R* implies that f_(z*) and () >
0, then

' f@* +h) — f(=*)

D
S =BT

> 0.

Since h < 0, there exists ¢; > 0 such that Vh €
<_6170)7 _ _

f@™ +h) < f(z").
In the same form, there exists es such that Vh €
(_6270)’

flx™ 4+ h) < f(z").

Considering h < 0 such that |h| < min{e,€2,d},
then
F(z" +h) < F(z").

Arguing in the same way than case (ia) and (ib),
for case (iia) and (iib) we get also a contradiction
with z* is a minimum. O

Corollary 1 Let F be a gH -differentiable interval-
valued function. If x* is a local minimum of F then
x* s a stationary point for F.

We must emphasize the importance of Theorem
2 since this allows to select potential candidates to
be minimum for an interval-valued function just by
checking whether 0 belongs to a closed and bounded
interval. On the other hand, we used gH-derivative
to obtain this result. It generalize previous arti-
cles where the authors used H-derivative and e-
derivative. The following result show this fact.

Example 2 We consider the interval-valued func-
tion F : R — K¢ defined by F(z) = [—1,1]-z. From
(2) we have

F(z)

(=], |2[].
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In this case F is gH-differentiable and F'(xz) =
[—1,1] for all x € R. Clearly any real number is a
stationary point for F' and so these are also candi-
dates to be minimum for F'. In fact, all real number
are minimum for F.

From Example 2 we can see that the endpoint
functions f and f are not differentiable and so F
is not H-differentiable and it is not e-differentiable.
Therefore concepts of stationary point for F' using
H-derivative and e-derivative are more restrictive.

3.2. Sufficient conditions

Of course the converse of Theorem 2 is not valid.
For instance, if we consider F(x) = [1,2] - 23, we
have that * = 0 is a stationary point for F but it
is not a minimum.

In this subsection we study sufficient conditions
for a stationary point to be a minimum of F'.

The following definition of convexity for interval-
valued functions is well-known in the literature, for
instance see [4, 5, 15, 16, 17] and references therein.

Definition 6 An interval-valued function F : T —
K¢ is said to be convex on a conver set T if and
only if for any x,y € T and X € [0, 1]

FOz+(1=XNy) 2AF()+(1—=NF(y). ()

If (4) satisfies for < then we say that F is strict
convet.

We want to note that the convexity is equivalent
to convexity of the endpoint functions.

Proposition 1 ([4, 15, 16, 18]) F is convex if and
only if f and f are convex.

From interval arithmetic we can see that the concept
of convexity is very restrictive such as we show in
the following example.

Example 3 We consider the interval-valued func-
tion ' : R — K¢ defined by F(x) = A - x, with
A = [a,a] C RT, which is a extension of a linear
function to interval-valued context. Then from in-
terval arithmetic (2) we have

|

Since f is not convex then F' is not conver.

if x>0
if x<O.

[ax, @z

F(z) [az, ax]

We have the following necessary condition for
convex interval-valued functions.

Theorem 3 (/5]) Let F : T — K¢ be a gH-
differentiable interval-valued function. If F' is con-
vex then

F(z)ogn Fy) z F'(y) - (x — ), (5)

forallxz,yeT.



The converse of the Theorem 3 is not valid. For in-
stance, if we consider F as in the Example 3 we have
that F' is not convex but it satisfies the condition
(5).

Based on the previous theorem we introduced the
following concept.

Definition 7 Let F T — K¢ be a gH-
differentiable interval-valued function and let T be
an invex set. Then F is said to be invex on K if for
all xz,y € T, there existsn: T x T — R such that

F(x) ©gn F(y) = F'(y) - n(z,y), (6)

forallx,y € T.
If (6) satisfies to = then we say that F is strict
invex.

Clearly if F' is convex then it is invex and the
converse is not valid. Also we have the following
consequence.

Corollary 2 Let F: T — K¢ be a interval-valued
function and let T be an invex set. If for all x,y €
T, there exists: T x T — R such that

F(z)z F'(y) -n(z,y) + F(y),

forallx,y € T. Then F is invez.

(7)

Note that the converse in Corollary 2 is not valid.
In addition, we note that an interval-valued function
that satisfies the condition (7) was called invex in
the article [12]. So, the definition given by (6) is
more general.

Next we give conditions such that a stationary
point is a minimum point based on convexity and
invexity.

Theorem 4 Let ' : T — K¢ be a interval-valued
function. If F is invexr then each stationary point
for F is a weak minimum point for F.

Proof We suppose that z* € T is a stationary point
for F' and it is not a weak minimum for F', then
there exists another x € T, with x # z*, such that
F(z) < F(z*). Now, since I is invex there exists
n: K x K — R such that

F(z) ©gy F(z*) z F'(z*) - n(z,y).

Taking on account that F(z) < F(z*) and Propo-
sition 2 part (v) in [5] we obtain

F(z*) ©gu F(x*) = F'(2") - n(z,y),
equivalently
{0} = F'(a") - n(,y).

Thus {0} = F'(z*) or {0} < F’(z*). Which contra-
dicts the hypothesis.O

Theorem 5 Let ' : T — K¢ be a interval-valued
function. If F is strict invex then each stationary
point for F is a minimum point for F.
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Proof It follow on the same argument of the
demonstration of the Theorem 4.0

In the literature we can find articles where the
authors considered other concepts of invexity and
generalized invexity for F' based on the invexity and
generalized invexity of its endpoint function as a
generalization of convexity (based in the Proposi-
tion 1).

Definition 8 [1, 14, 18] Let F : T — K¢ be an e-
differentiable interval-valued function and let T be
an invex set. Then F is said to be endpoint invex
(e-invezx, for short) respect to n if and only if f and
f are invex with respect of same 1.

The e-invexity is a concept very restrictive in two
way: first by the use of e-derivative and second by
claim the invexity of the endpoint functions which
is restrictive such as occur with the convexity. In
fact if consider F' defined as in the Example 3 we
have that F' is not invex since f is not invex but
it is invex since it satisfies the condition (6) with
n(z,y) =z —y.

The following example show the advantages of the
concept of invexity given here.

Example 4 2 We consider the interval-valued
function F : R = K¢ defined as in the Example2,
i.e. F(z)=1]-1,1] -z, equivalently

F(z) = [=|x], [=]].

We have that F is gH-differentiable and F'(x) =
[—1,1] for all x € R. Clearly any real number is a
stationary point for F' and so these are also candi-
dates to be weak minimum for F.

On the other hand, F is an invex interval-valued
funtion respecto to n(x,y) = |x|—|y| for allz,y € R.
Therefore, from Theorem 4, any real number is a
weak minimum point.

Note that in this case F is not e-differentiable and
F' is not e-invez.

4. Conclusions

We have introduced new concept of stationary point
for an interval-valued function based on the gH-
derivative. We must emphasize the importance that
this concept has from a practical and computational
point of view. We have introduced a new concept
of invexity which generalizes previous approaches
and we have shown that it is a sufficient optimality
condition.

On the other hand, we have shown that the con-
cepts of e-differentiability, convexity and e-invexity
are not adequate tools for interval optimization
problems.
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