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Abstract

In this article we examine to necessary and suffi-
cient optimality conditions for interval optimization
problems. We introduce a new concept of stationary
point for an interval-valued function based on the
gH-derivative. We show the importance the this
concept from a practical and computational point
of view. We introduce a new concept of invexity
for gH-differentiable interval-valued function which
generalizes previous concepts and we prove that it is
a sufficient optimality condition. Finally, we show
that the concepts of differentiability, convexity and
invexity for interval-valued functions based on the
differentiability, convexity and invexity of its end-
point functions are not adequate tools for interval
optimization problems.

Keywords: Interval optimization, sufficient condi-
tions, generalized convexity

1. Introduction

The stationary point notion for interval optimiza-
tion problems has been introduced in previous ar-
ticles. With these notions we can obtain necessary
optimality conditions only for some class of inter-
val optimization problems [15, 16, 19] or they are
proved under restrictive conditions (for instance,
comparable interval-valued functions)[11]. In these
notions very restrictive concepts of differentiabil-
ity for interval-valued functions were used. For
instance, Hukuhara derivative or derivative based
on the differentiability of the endpoint functions
[1, 14, 15, 16, 17, 18, 19].
Here we introduce a new notion of stationary

point for interval-valued functions considering the
generalized Hukuhara derivative, which is the most
general concept so far.

Another main part in optimization theory is es-
tablishing sufficient optimality conditions. In the
literature we can find articles devoted on this is-
sue. In general the considered conditions are based
on the convexity or generalized convexity of the
endpoint functions of an interval-valued function
[1, 9, 14, 15, 16, 17, 18, 19]. We show that these
conditions are very restrictive. We introduce a new
concept of invexity for generalized Hukuhara dif-
ferentiable interval-valued functions and show that

invexity is such that each stationary point is min-
imum. In addition we show that invex interval-
valued functions are conditions more adequate than
previous work.

2. The space of intervals and
interval-valued functions

We denote by KC the family of all bounded closed
intervals in R, i.e.,

KC = {[a, a] / a, a ∈ R and a ≤ a} ,

Given A = [a, a] ∈ KC , a and a stand for the
lower and upper bounds of A, respectively. For A =
[a, a], B =

[
b, b
]
∈ KC and λ ∈ R we consider the

following operations

A+B = [a, a] +
[
b, b
]

=
[
a+ b, a+ b

]
, (1)

λ ·A = λ [a, a] =
{

[λa, λa] if λ ≥ 0,
[λa, λa] if λ < 0. (2)

From (1) and (2) we have −A = [−a,−a] and B −
A = B+ (−A) =

[
b− a, b− a

]
. The space KC with

operations (1) and (2) is not a linear space since an
interval does not have inverse element and therefore
subtraction does not have adequate properties (see
[3, 13]).

More recently, Stefanini and Bede in [13] have
introduced the following difference between two in-
tervals.
Definition 1 ([13]) The generalized Hukuhara dif-
ference of two intervals, A and B, (gH-difference)
is defined as follows

A	gH B = C ⇔
{

(a) A = B + C, or
(b) B = A+ (−1)C.

This difference has many interesting new prop-
erties, for example A 	g A = {0} = [0, 0]. Also,
the gH-difference of two intervals A = [a, a] and
B =

[
b, b
]
always exists and it is equal to (see

Proposition 4 in [13])

A	gHB =
[
min

{
a− b, a− b

}
,max

{
a− b, a− b

}]
.

Give two intervals A = [a, a] and B =
[
b, b
]
we

have

A � B ⇐⇒ a ≤ b and a ≤ b;
A � B ⇐⇒ A � B and A , B;
A ≺ B ⇐⇒ a < b and a < b.
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The order relation � was initially introduced in [10]
and used in interval optimization problems, see [4,
7, 8, 15, 16].

2.1. gH-differentiable interval-valued
functions

In this paper T denotes an open set in R and a
function F : T → KC will be called interval-valued
function. For each x in the domain we denote
F (x) =

[
f(x), f(x)

]
such that f(x) ≤ f(x). The

functions f and f will be called, respectively, the
lower and the upper (endpoint) functions of F .

Based on the gH-difference, the following defini-
tion of differentiability for interval-valued functions
was introduced in Stefanini and Bede in [13].

Definition 2 ([13]) The gH-derivative of an
interval-valued function F : T → KC at x0 ∈ T
is defined as

F ′(x0) = lim
h→0

F (x0 + h)	gH F (x0)
h

. (3)

If F ′(x0) ∈ KC satisfying (3) exists, we say
that F is generalized Hukuhara differentiable (gH-
differentiable) at x0. We say that F is gH-
differentiable on T if F is gH-differentiable at each
point x0 ∈ T .

In (3) the limits are taken in the metric space
(KC , H), where H is defined by

H(A,B) = max
{
|a− b| ,

∣∣a− b∣∣} .
Next we give the following result which connects

gH-differentiability of F and the differentiability of
its endpoint functions f and f .

Theorem 1 ([3]) Let F : T → KC be a function.
Then, F is gH-differentiable at x0 ∈ T if and only
if one of the following cases hold:
(a) f and f are differentiable at x0 and

F ′(x0) =
[
min

{
f ′(x0), f

′(x0)
}

, max
{

f ′(x0), f
′(x0)

}]
;

(b) the lateral derivatives f ′−(x0), f ′+(x0), f ′−(x0)

and f ′+(x0) exist and satisfy f ′−(x0) = f
′
+(x0) and

f ′+(x0) = f
′
−(x0). Moreover

F ′(t0)

=
[
min

{
f ′
−

(x0), f
′
−(x0)

}
, max

{
f ′
−

(x0), f
′
−(x0)

}]
=

[
min

{
f ′

+
(x0), f

′
+(x0)

}
, max

{
f ′

+
(x0), f

′
+(x0)

}]
There are other concepts of derivative for interval-

valued functions which were used in interval opti-
mization: Hukuhara derivative (H-derivative [6])
and endpoint derivative (e-derivative). It well
known that if F is H-differentiable then it possesses
the property that the diameter len(F (t)) (lenght of
F (t)) is nondecreasing as t increases [2, 3, 13]. Thus

H-derivative is a concept very restrictive. On the
other hand, the e derivative is based on the deriva-
tive of its endpoint functions of F .

Definition 3 Let F : T → KC be an interval-
valued function. We say that F is endpoint differ-
entiable (e-differentiable for short) if and only if the
endpoint functions f and f are differentiable.

We note that initially e-differentiability was intro-
duced as weakly differentiability [15].

We can clearly see that the gH-derivative is
a more general concept than the Hukuhara and
endpoint derivatives. On the other hand, both
Hukuhara and endpoint derivative are very restric-
tive as we show in the following example.

Example 1 ([4]) We consider the interval-valued
function F : R→ KC defined by F (x) = A ·x, where
A = [1, 2]. Clearly we can see that F is an extension
of a linear function to interval-valued context. From
(2) we have

F (x) =
{

[x, 2x] if x ≥ 0;
[2x, x] if x < 0.

We can see that the endpoint functions f and f
are not differentiable at t = 0 and so F is not H-
differentiable and it is not e-differentiable. However
F is gH-differentiable on R and F ′(x) = A for all
x ∈ R.

3. Interval optimization problems

Since the value F (x) is a closed interval, we need
to interpret the minimization meaning. The most
straightforward way is to invoke the order relations
between intervals. However, the order relation �
is not a total order in KC . So, we follow a simi-
lar solution concept as that used in multiobjective
programming problem to to define a minimum.

In [1, 4, 5, 9, 14, 15, 16, 17, 18, 19] the authors
considered the following concept of minimum for
interval-valued functions.

Definition 4 Let F : T → KC be an interval-
valued function.
(i) x∗ ∈ T is said to be a (local) minimum if there
does not exist x ∈ T (∃δ > 0, x ∈ B(x∗, δ)∩S) such
that F (x) � F (x∗);
(ii) x∗ ∈ T is said to be a (local) weak minimum if
there does not exist x ∈ T (∃δ > 0, x ∈ B(x∗, δ)∩S)
such that F (x) ≺ F (x∗).

Clearly, if x∗ ∈ T is minimum then it is weak
minimum.

3.1. Necessary conditions

Next we propose a new definition of stationary point
for interval-valued functions.
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Definition 5 Let F : T → KC a gH-differentiable
interval-valued function and x∗ ∈ T . We say that
x∗ is a stationary point for F if 0 ∈ F ′(x∗).

Now is turn to present a new necessary optimality
condition.

Theorem 2 Let F be a gH-differentiable interval-
valued function. If x∗ is a local weak minimum of
F then x∗ is a stationary point for F .

Proof Arguing by contradiction let us suppose that
0 < F ′(x∗). Then, two cases are possible:

(i) F ′(x∗) ⊂ R+ or (ii) F ′(x∗) ⊂ R−.

We suppose (i) and let us consider each one of the
two different forms (a) and (b) to write F ′(x∗) in
Theorem 1.
(ia) If F ′(x∗) ⊂ R+ then f ′(x∗), f ′(x∗) > 0 and so
f and f are increasing functions in a neighborhood
of x∗. Considering ε small enough, we get

f(x∗ − ε) < f(x∗) and f(x∗ − ε) < f(x∗).

So F (x∗ − ε) ≺ F (x∗).
(ib) F ′(x∗) ⊂ R+ implies that f ′−(x∗) and f ′−(x∗) >
0, then

f
′
−(x∗) = lim

h→0−

f(x∗ + h)− f(x∗)
h

> 0.

Since h < 0, there exists ε1 > 0 such that ∀h ∈
(−ε1, 0),

f(x∗ + h) < f(x∗).

In the same form, there exists ε2 such that ∀h ∈
(−ε2, 0),

f(x∗ + h) < f(x∗).

Considering h < 0 such that |h| < min{ε1, ε2, δ},
then

F (x∗ + h) ≺ F (x∗).

Arguing in the same way than case (ia) and (ib),
for case (iia) and (iib) we get also a contradiction
with x∗ is a minimum. �

Corollary 1 Let F be a gH-differentiable interval-
valued function. If x∗ is a local minimum of F then
x∗ is a stationary point for F .

We must emphasize the importance of Theorem
2 since this allows to select potential candidates to
be minimum for an interval-valued function just by
checking whether 0 belongs to a closed and bounded
interval. On the other hand, we used gH-derivative
to obtain this result. It generalize previous arti-
cles where the authors used H-derivative and e-
derivative. The following result show this fact.

Example 2 We consider the interval-valued func-
tion F : R→ KC defined by F (x) = [−1, 1]·x. From
(2) we have

F (x) = [−|x|, |x|].

In this case F is gH-differentiable and F ′(x) =
[−1, 1] for all x ∈ R. Clearly any real number is a
stationary point for F and so these are also candi-
dates to be minimum for F . In fact, all real number
are minimum for F .

From Example 2 we can see that the endpoint
functions f and f are not differentiable and so F
is not H-differentiable and it is not e-differentiable.
Therefore concepts of stationary point for F using
H-derivative and e-derivative are more restrictive.

3.2. Sufficient conditions

Of course the converse of Theorem 2 is not valid.
For instance, if we consider F (x) = [1, 2] · x3, we
have that x∗ = 0 is a stationary point for F but it
is not a minimum.

In this subsection we study sufficient conditions
for a stationary point to be a minimum of F .
The following definition of convexity for interval-

valued functions is well-known in the literature, for
instance see [4, 5, 15, 16, 17] and references therein.

Definition 6 An interval-valued function F : T →
KC is said to be convex on a convex set T if and
only if for any x, y ∈ T and λ ∈ [0, 1]

F (λx+ (1− λ)y) � λF (x) + (1− λ)F (y). (4)

If (4) satisfies for ≺ then we say that F is strict
convex.

We want to note that the convexity is equivalent
to convexity of the endpoint functions.

Proposition 1 ([4, 15, 16, 18]) F is convex if and
only if f and f are convex.

From interval arithmetic we can see that the concept
of convexity is very restrictive such as we show in
the following example.

Example 3 We consider the interval-valued func-
tion F : R → KC defined by F (x) = A · x, with
A = [a, a] ⊂ R+, which is a extension of a linear
function to interval-valued context. Then from in-
terval arithmetic (2) we have

F (x) =
{

[ax, ax] if x ≥ 0;
[ax, ax] if x < 0.

Since f is not convex then F is not convex.

We have the following necessary condition for
convex interval-valued functions.

Theorem 3 ([5]) Let F : T → KC be a gH-
differentiable interval-valued function. If F is con-
vex then

F (x)	gH F (y) � F ′(y) · (x− y), (5)

for all x, y ∈ T .
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The converse of the Theorem 3 is not valid. For in-
stance, if we consider F as in the Example 3 we have
that F is not convex but it satisfies the condition
(5).

Based on the previous theorem we introduced the
following concept.

Definition 7 Let F : T → KC be a gH-
differentiable interval-valued function and let T be
an invex set. Then F is said to be invex on K if for
all x, y ∈ T , there exists η : T × T → R such that

F (x)	gH F (y) � F ′(y) · η(x, y), (6)

for all x, y ∈ T .
If (6) satisfies to � then we say that F is strict
invex.

Clearly if F is convex then it is invex and the
converse is not valid. Also we have the following
consequence.

Corollary 2 Let F : T → KC be a interval-valued
function and let T be an invex set. If for all x, y ∈
T , there exists η : T × T → R such that

F (x) � F ′(y) · η(x, y) + F (y), (7)

for all x, y ∈ T . Then F is invex.

Note that the converse in Corollary 2 is not valid.
In addition, we note that an interval-valued function
that satisfies the condition (7) was called invex in
the article [12]. So, the definition given by (6) is
more general.
Next we give conditions such that a stationary

point is a minimum point based on convexity and
invexity.

Theorem 4 Let F : T → KC be a interval-valued
function. If F is invex then each stationary point
for F is a weak minimum point for F .

ProofWe suppose that x∗ ∈ T is a stationary point
for F and it is not a weak minimum for F , then
there exists another x ∈ T , with x , x∗, such that
F (x) ≺ F (x∗). Now, since F is invex there exists
η : K ×K → R such that

F (x)	gH F (x∗) � F ′(x∗) · η(x, y).

Taking on account that F (x) ≺ F (x∗) and Propo-
sition 2 part (v) in [5] we obtain

F (x∗)	gH F (x∗) � F ′(x∗) · η(x, y),

equivalently

{0} � F ′(x∗) · η(x, y).

Thus {0} � F ′(x∗) or {0} ≺ F ′(x∗). Which contra-
dicts the hypothesis.�

Theorem 5 Let F : T → KC be a interval-valued
function. If F is strict invex then each stationary
point for F is a minimum point for F .

Proof It follow on the same argument of the
demonstration of the Theorem 4.�

In the literature we can find articles where the
authors considered other concepts of invexity and
generalized invexity for F based on the invexity and
generalized invexity of its endpoint function as a
generalization of convexity (based in the Proposi-
tion 1).

Definition 8 [1, 14, 18] Let F : T → KC be an e-
differentiable interval-valued function and let T be
an invex set. Then F is said to be endpoint invex
(e-invex, for short) respect to η if and only if f and
f are invex with respect of same η.

The e-invexity is a concept very restrictive in two
way: first by the use of e-derivative and second by
claim the invexity of the endpoint functions which
is restrictive such as occur with the convexity. In
fact if consider F defined as in the Example 3 we
have that F is not invex since f is not invex but
it is invex since it satisfies the condition (6) with
η(x, y) = x− y.
The following example show the advantages of the

concept of invexity given here.

Example 4 2 We consider the interval-valued
function F : R → KC defined as in the Example2,
i.e. F (x) = [−1, 1] · x, equivalently

F (x) = [−|x|, |x|].

We have that F is gH-differentiable and F ′(x) =
[−1, 1] for all x ∈ R. Clearly any real number is a
stationary point for F and so these are also candi-
dates to be weak minimum for F .
On the other hand, F is an invex interval-valued

funtion respecto to η(x, y) = |x|−|y| for all x, y ∈ R.
Therefore, from Theorem 4, any real number is a
weak minimum point.
Note that in this case F is not e-differentiable and

F is not e-invex.

4. Conclusions

We have introduced new concept of stationary point
for an interval-valued function based on the gH-
derivative. We must emphasize the importance that
this concept has from a practical and computational
point of view. We have introduced a new concept
of invexity which generalizes previous approaches
and we have shown that it is a sufficient optimality
condition.

On the other hand, we have shown that the con-
cepts of e-differentiability, convexity and e-invexity
are not adequate tools for interval optimization
problems.
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