










Theorem 4.4 (Strong completeness theorem) As-
sume Θ be a set of formulas and ϕ a formula of LR.
The following are equivalent:
(a) Θ ` ϕ,
(b) Θ |=R ϕ for any RMV-algebra R,
(c) Θ |=R ϕ for any linearly-ordered RMV-algebra
R.

Proof. The equivalence of (a) and (b) is straight-
forward. The equivalence with (c) follows by Theo-
rem 2.5. See also [11, Theorem 2.11].

Theorem 4.5 (Standard completeness) For a for-
mula ϕ of LR, the following are equivalent:
(a) ` ϕ,
(b) |=[0,1] ϕ.

Proof. It follows by Theorem 3.4.

As a direct consequence of the standard complete-
ness it follows that the logic of RMV-algebras is a
conservative extension of Łukasiewicz logic.

Finally, we prove an approximation result.

Theorem 4.6 (Approximation of continuous func-
tions) Let n ≥ 1 be a natural number. For any
continuous function h : [0, 1]n → [0, 1] there exists
a sequence of formulas (ϕn)n of LR such that h is
the uniform limit of (fϕn

)n.

Proof. If Formn is the set of the formulas
which contain only the variables v1, . . ., vn, then
Rn = Formn/≡∅ is the free RMV-algebra with n-
generators. By Theorem 3.7, Rn is a semisimple
RMV-algebra. By Theorem 2.11, Rn is dense in
C(X) in the sup-norm which proves our result.

Remark 4.7 The logical system briefly presented
in this chapter is strongly related with Rational
Łukasiewicz Logic developed in [10], where only
multiplication by rationals is considered. The alge-
braic structures of Rational Łukasiewicz Logic are
the divisible MV-algebras. Our system is also a con-
servative extension of Rational Łukasiewicz Logic.
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