Specific Solutions of a Class of Second Order
Difference Equation with Boundary Conditions

Y. Ouyang
School of Mathematics and Statistics
Hechi University
Guangxi, P. R. China

Abstract—Difference equation is a kind of important tool to study
the rule of natural phenomena. In this paper, we discuss several
specific solutions of a class of second order difference equation
with boundary conditions.

Keywords—difference equation; second order; boundary
condition; specific solution

I. INTRODUCTION

Difference equations is a kind of important tool to study the
rule of natural phenomena, such as, physical problems arising
in a wide variety of applications. Cheng and Cho [3]
investigated the following second order difference equations

$$\Delta^2 x(k - 1) + p(k) x(k) = 0,$$

where p(k) is a real valued function defined on a set of the
natural numbers.

Motivated by the results given in [1, 2, 3, 4, 5], in this paper,
we discuss specific solutions of the following second order
difference equations for $k \in \{1, 2, \cdots, N\}$.

$$\Delta^2 x(k - 1) + p(k) x(k) = 0, \quad (1)$$

satisfying

$$x(0) = 0, x(N + 1) = 0,$$

or

$$x(0) + \alpha x(1) = 0, x(N + 1) + \lambda x(N) = 0,$$

or

$$x(0) + \alpha(1) = 0, x(2m) + \lambda x(2m) = 0, x(4m + 1) + \theta x(4m) = 0.$$

II. MAIN RESULTS

Throughout this paper, let n, m be natural numbers,

$$I_{n,m} = \{n, n + 1, \cdots, m\}.$$

Proposition 1. Let $N = 2m + 1$.

$$p(k) = \begin{cases} 0, & k \in I_{0,m}, \\ 2/(m + 1), & k = m + 1, \\ 0, & k \in I_{m+2,N}. \end{cases} \quad (2)$$

and

$$x(k) = \begin{cases} k, & k \in I_{0,m+1}, \\ 2m - k + 2, & k \in I_{m+1,N+1}. \end{cases} \quad (3)$$

Then (3) is the specific solution of second order difference
equation (1).

Proof. From (2) and (3), we have

$$\frac{\Delta^2 x(m)}{x(m + 1)} = \frac{x(m + 2) - 2x(m + 1) + x(m)}{x(m + 1)} = \frac{m - 2(m + 1) + m}{m + 1} = \frac{-2}{m + 1} = -p(m + 1), \quad (4)$$

Since

$$\Delta^2 x(k - 1)/x(k) = 0 = -p(k)$$

for $k \in I_{1, m} \cup k \in I_{m+2,N}$, (3) is a specific solution of (1) with

$$x(0) = 0, x(N + 1) = 0.$$

Proposition 2. Let $N = 2m$.

$$p(k) = \begin{cases} 0, & k \in I_{0,m}, \\ (2m+1)/m(m+1), & k = m + 1, \\ 0, & k \in I_{m+2,N}. \end{cases} \quad (5)$$

and

$$x(k) = \begin{cases} k, & k \in I_{0,m+1}, \\ (m+1)(2m - k + 1)/m, & k \in I_{m+1,N+1}. \end{cases} \quad (6)$$

Then (6) is the specific solution of (1).

Proof. From (5) and (6), we obtain that

$$\Delta^2 x(m)/x(m + 1) = \frac{x(m + 2) - 2x(m + 1) + x(m)}{x(m + 1)} = \frac{(m^2 - 1)/m - 2(m + 1) + m}{m + 1} = \frac{m^2 - 1 - 2m(m + 1) + m^3}{m(m + 1)} = \frac{2m + 1}{m + 1} = -p(m + 1). \quad (7)$$
Since $\Delta^2 x(k-1)/x(k) = 0 = -p(k)$ for $k \in I_{\omega,0} \cup k \in I_{\sigma + 2, N}$, (6) is a specific solution of (1) such that $x(0) = 0$, $x(N+1) = 0$.

Proposition 3. Let $N = 2m + 1$.

$$p(k) = \begin{cases} 0, & k \in I_{\omega,0}, \\ \frac{N + 1 + N\lambda + N\sigma + 2m\lambda\sigma}{(m + 1 + m\lambda)(m + 1 + m\lambda)}, & k = m + 1, \\ 0, & k \in I_{\omega + 2, N}, \end{cases}$$

and

$$x(k) = \begin{cases} \frac{1 + (1 + \lambda)(k - 1)}{(m + 1 + m\lambda)(2m + 1 + 1/(1 + \lambda) - k)}, & k \in I_{\omega,0}, \\ \frac{1}{N + 1 + N\lambda + N\sigma + 2m\lambda\sigma}, & k = m + 1, \\ 0, & k \in I_{\omega + 2, N}. \end{cases}$$

Then (9) is the specific solution of (1) with $x(0) + \sigma x(1) = 0$, $x(N+1) + \lambda x(N) = 0$.

Proof. From (8) and (9), we conclude

$$\Delta^2 x(m)/x(m+1) = x(m+2) - 2x(m+1)/x(m+1) = (m + 1 + m\lambda)$$

$$= \frac{1 + \sigma}{m + 1 + m\lambda} + \frac{x(m + 1)}{x(m)}$$

$$= \frac{m + 1 + m\lambda}{m + 1 + m\lambda} + \frac{(1 + \lambda)(m + 1 + m\lambda)}{(m + 1 + m\lambda)(m + 1 + m\lambda)}$$

$$= \frac{2m + 2(2m + 1)\lambda + (2m + 1)\sigma + 2m\lambda\sigma}{(m + 1 + m\lambda)(m + 1 + m\lambda)}$$

and

$$\Delta^2 x(k-1)/x(k) = 0 = -p(k)$$

for $k \in I_{\omega,0} \cup k \in I_{\sigma + 2, N}$.

Proposition 4. Let $N = 2m$.

$$p(k) = \begin{cases} 0, & k \in I_{\omega,0}, \\ \frac{N + 1 + N\lambda + N\sigma + (N - 1)\lambda\sigma}{(m + (m - 1)\sigma)(m + 1 + m\lambda)}, & k = m, \\ 0, & k \in I_{\omega + 2, N}. \end{cases}$$

and

$$x(k) = \begin{cases} \frac{1 + (1 + \lambda)(k - 1)}{(m + 1 + m\lambda)(2m + 1 + 1/(1 + \lambda) - k)}, & k \in I_{\omega,0}, \\ \frac{1}{N + 1 + N\lambda + N\sigma + (N - 1)\lambda\sigma}, & k = m, \\ 0, & k \in I_{\omega + 2, N}. \end{cases}$$

Then (12) is the solution of (1) with $x(0) + \sigma x(1) = 0$, $x(N+1) + \lambda x(N) = 0$.

Proof. Using (11) and (12), we have

$$\Delta^2 x(m)/x(m) = x(m+1) - 2x(m) + (m - 1)/x(m)$$

$$= \frac{x(m+1) - x(m) - (x(m) - x(m+1))}{x(m)}$$

$$= \frac{m(1 + \sigma) - \sigma}{(m + 1)(m + 1)\sigma} + 1 + \sigma$$

$$= \frac{1 + \sigma}{m + (m - 1)\sigma} + \frac{1 + \lambda}{m + 1 + m\lambda}$$

$$= \frac{(1 + \sigma)(m + 1 + m\lambda) + (1 + \lambda)(m + (m - 1)\sigma)}{(m + (m - 1)\sigma)(m + 1 + m\lambda)}$$

$$= \frac{2m + 2m\lambda + 2m\sigma}{(m + (m - 1)\sigma)(m + 1 + m\lambda)}$$

$$= \frac{p(m)}{1 + \sigma}.$$

$$\Delta^2 x(k-1)/x(k) = 0 = -p(k)$$

for $k \in I_{\omega,0} \cup k \in I_{\sigma + 2, N}$.

Proposition 5. Let

$$p(k) = \begin{cases} 0, & k \in I_{\omega,0}, \\ \frac{2m + 1 + 2m\sigma + (2m - 1)\lambda\sigma}{(m + (m - 1)\sigma)(m + 1 + m\lambda)}, & k = m, \\ 0, & k \in I_{\omega + 2, N}. \end{cases}$$

and

$$x(k) = \begin{cases} \frac{1 + (1 + \lambda)(k - 1)}{(m + (m - 1)\sigma)(m + 1 + m\lambda) - (1 + \lambda)(k - 1)}, & k \in I_{\omega,0}, \\ \frac{1}{(m + (m - 1)\sigma)(m + 1 + m\lambda)}, & k = m, \\ 0, & k \in I_{\omega + 2, N}. \end{cases}$$

Then (15) is the solution of (1) with $x(0) + \sigma x(1) = 0$, $x(N+1) + \lambda x(N) = 0$, $x(4m+1) + \theta x(4m) = 0$.

Proof. Using (14) and (15), we have

$$\Delta^2 x(m)/x(m) = \frac{2m + 2m\lambda + 2m\sigma}{(m + (m - 1)\sigma)(m + 1 + m\lambda)} = p(m),$$

$$\Delta^2 x(3m)/x(3m) = \frac{x(3m+1) - 2x(3m) + x(3m-1)}{x(3m)}$$

$$= \frac{x(3m+1) - 2x(3m) + x(3m-1)}{x(3m)}.$$
\[
\begin{align*}
\Delta^2 x(k-1) / x(k) &= 0 = -p(k)
\end{align*}
\]
for \(k \in I_1 \cup I_{m+1} \cup I_{3m+1} \cup I_{4m} \), (15) is a specific solution of (1) with
\[
x(0) + \sigma x(1) = 0, x(2m+1) + \lambda x(2m) = 0, x(4m+1) + \theta x(4m) = 0
\]

III. SUMMARY

Difference equation is a kind of important tool to study the rule of natural phenomena. In this paper, we discuss several specific solutions of a class of second order difference equation with boundary conditions.

ACKNOWLEDGEMENTS

This research was supported by Scientific Research Foundation of the Education Department of Guangxi Autonomous Region of China (No. 201010LX473).

REFERENCES