Evaluating the Packing Process in Food Industry
Using Fuzzy \bar{X} and \bar{S} Control Charts

Nihal Erginel
Anadolu University Department of Industrial Engineering, 26555 Eskişehir, Turkey
Corresponding Author’s E-mail: nerginel@anadolu.edu.tr

Sevil Şentürk
Anadolu University Department of Statistics, 26470 Eskişehir, Turkey

Cengiz Kahraman
İstanbul Technical University Department of Industrial Engineering, 34367 Istanbul, Turkey

İhsan Kaya
Yıldız Technical University Department of Industrial Engineering, 34349 İstanbul, Turkey

Received: 07.02.2011
Accepted: 02.05.2011

Abstract

The fuzzy set theory addresses the development of concepts and techniques for dealing with uncertainty or impression conditions. If the collected data from a process include vagueness due to human subjectively or measurement system, fuzzy control charts are available tools for monitoring and evaluating the process. The main contribution of fuzzy control charts is to provide flexibility to the control limits. When sample mean is too close to the control limits and the used measurement system is not so sensitive, the decision may be faulty. In this paper, the fuzzy standard deviation is firstly introduced to obtain fuzzy \bar{X} and \bar{S} control charts and then these fuzzy control charts are employed in food industry to monitor if the processes are under control or not. Additionally, the fuzzy \bar{X} and \bar{S} control charts are developed for the case that the population parameters (μ and σ) are known.

Keywords Fuzzy, fuzzy standard deviation, \bar{X} - \bar{S} control chart, α-cut, α-level fuzzy midrange.

1. Introduction

Statistical process control (SPC) is a powerful and a widely used methodology to monitor and evaluate processes. In many applications on practice, the traditional control charts are used. The main aim of traditional control charts, named Shewhart control charts, is to detect whether or not a process is “out of control”. The control charts contain three elements: the centerline (CL), the upper control limit (UCL) and the lower control limit (LCL). CL represents the average value of the quality characteristic, UCL and LCL present the $\pm 3\sigma_x$ distance from the CL, where σ_x is the standard deviation of sample means. Also, the warning limits keep on $\pm 2\sigma_x$ from the centre line in control charts. These control limits are represented as in Figure 1.
The rest of the paper is organized in the following order: A literature review on fuzzy control charts is given in Section 2. The calculation of fuzzy standard deviation is presented in Section 3. Fuzzy $\bar{X} - \bar{S}$ control charts with and without the known population parameters, μ and σ, are introduced in Section 4. The application to the packing process of biscuits with fuzzy $\bar{X} - \bar{S}$ control charts are presented in Section 5. In Section 6, the conclusions are given.

2. Literature Review on Fuzzy Control Charts

The fuzzy control charts were firstly presented by Raz and Wang\(^2\) and Wang and Raz\(^3\). They proposed two approaches: probabilistic approach and membership approach. In probabilistic approach, the observations are converted from linguistic terms to their crisp values, and the control limits are calculated for variables. In membership approach, the fuzzy subsets corresponding to the observations in a sample are combined into a single fuzzy subset that corresponds to the sample average according to the rules of fuzzy arithmetic. Kanagawa et al\(^4\) proposed control charts using linguistic terms as labeled fuzzy data from a stand point different to that of Wang and Raz\(^5\). Their control charts are aimed at directly controlling the underlying probability distribution of the linguistic data. El-Shal and Morris\(^6\) made an investigation into the use of fuzzy logic to modify SPC rules, with the aim of reducing the generation of false alarm and also improving the detection and detection-speed of real faults. Rowlands and Wang\(^7\) introduced a method of fuzzy SPC evaluation and control (FSEC) which combines traditional statistical process control methodology with an intelligent system approach. Fuzzy logic is employed to evaluate SPC zone rules which lead to the special membership functions and fuzzy if-then rules. FSEC is based on a multiple-input/ single output system. Gülbay et al\(^8\) proposed α-cut control charts for attributes data to regulate the tightness of the inspection for attribute with triangular fuzzy numbers. In their approaches the tightness of the inspection can be defined by selecting a suitable α-cut. The α-cut approach provides the ability of detecting out of control points and effectiveness of fuzzy control charts. Cheng\(^9\) proposed the method of constructing a fuzzy control chart for a process with fuzzy outcomes. Fuzzy outcomes are described in fuzzy numbers based on experts’ quality ratings. Two fuzzy control charts are constructed to directly monitor the fuzzy outcomes in order to establish whether or not the process is in control. Gülbay and Kahraman\(^10\) proposed an alternative approach to fuzzy control chart: direct fuzzy approach. They used a direct fuzzy approach to fuzzy control chart for attributes under vague data using the probabilities of fuzzy events. Direct fuzzy approach does not require the use of defuzzification and compare the linguistic data in fuzzy space without making any transformation. Faraz and Moghadam\(^11\) introduced a fuzzy chart for controlling the process mean. They designed the fuzzy chart that had a warning line besides...
upper control limit. Erginel12 showed the theoretical structure of fuzzy individual and moving range control charts with \(\alpha \)-cuts by using \(\alpha \)-level fuzzy median transformation techniques. Sentürk and Erginel13 presented the theoretical structure of fuzzy \(\bar{\bar{X}} - \bar{R} \) and \(\bar{X} - \bar{S} \) control charts with \(\alpha \)-cuts by using \(\alpha \)-level fuzzy midrange transformation techniques. They used the triangular fuzzy membership functions to obtain the fuzzy \(\bar{\bar{X}} - \bar{R} \) and \(\bar{X} - \bar{S} \) control charts. Sentürk14 introduced a fuzzy structure of regression control charts named \(\alpha \)-level fuzzy midrange for \(\alpha \)-cut fuzzy \(\bar{X} \)-regression control chart. Sentürk et al15 developed fuzzy \(\bar{u} \) control charts. Kahraman et al16 comparatively analyzed fuzzy statistical process control techniques in production system. Kaya and Kahraman17 used the fuzzy set theory to add more information and flexibility to process capability analyses. For this aim, linguistic definition of the quality characteristic measurements were converted to fuzzy numbers and fuzzy control charts are derived for fuzzy measurements of the related quality characteristic. Fuzzy control charts were used to increase the accuracy of PCA by determining whether or not the process is in statistical control. Also, fuzzy set theory is used for multi-criteria decision making applications, like Kahraman and Tolga18, and Pahlavani19.

3. Calculation of fuzzy standard deviation

A measurement of a certain characteristic is represented by a triangular fuzzy number \((a, b, c)\) as shown in Figure 29.

![Fig. 2. Representation of a sample by triangular fuzzy numbers.](image)

In this study, triangular fuzzy number is represented by \((\bar{X}_a, \bar{X}_b, \bar{X}_c)\) for each fuzzy observation from process. Fuzzy arithmetic mean of fuzzy samples is also represented by \((\bar{\bar{X}}_a, \bar{\bar{X}}_b, \bar{\bar{X}}_c)\), and fuzzy overall mean is denoted as \((\bar{\bar{X}}_a, \bar{\bar{X}}_b, \bar{\bar{X}}_c)\). Their formulations are given as follows:

\[
\bar{X}_{a,j} = \frac{\sum_{i=1}^{n} X_{a,i}}{n} \quad (1)
\]

\[
\bar{X}_{b,j} = \frac{\sum_{i=1}^{n} X_{b,i}}{n} \quad (2)
\]

\[
\bar{X}_{c,j} = \frac{\sum_{i=1}^{n} X_{c,i}}{n} \quad (3)
\]

\[
\bar{\bar{X}}_a = \frac{\sum_{j=1}^{m} \bar{X}_{a,j}}{m} \quad (4)
\]

\[
\bar{\bar{X}}_b = \frac{\sum_{j=1}^{m} \bar{X}_{b,j}}{m} \quad (5)
\]

\[
\bar{\bar{X}}_c = \frac{\sum_{j=1}^{m} \bar{X}_{c,j}}{m} \quad (6)
\]

\[
(\bar{\bar{X}}_a, \bar{\bar{X}}_b, \bar{\bar{X}}_c) = \left\{ \frac{\sum_{j=1}^{m} \bar{X}_{a,j}}{m}, \frac{\sum_{j=1}^{m} \bar{X}_{b,j}}{m}, \frac{\sum_{j=1}^{m} \bar{X}_{c,j}}{m} \right\} \quad (7)
\]

for \(i=1,2,\cdots,n \), \(j=1,2,\cdots,m \) where \(n \) is the size of fuzzy sample and \(m \) is the number of fuzzy samples.

The triangular fuzzy standard deviation is represented as \((\bar{S}_a, \bar{S}_b, \bar{S}_c)\) for each sample and the fuzzy average standard deviation is denoted as \((\bar{\bar{S}}_a, \bar{\bar{S}}_b, \bar{\bar{S}}_c)\). The theoretical structure of fuzzy \(\bar{\bar{X}} \) control chart and fuzzy \(\bar{\bar{S}} \) control chart was first time...
presented by Sentürk and Erginel13. They give the formulation of standard deviation of \(j \)th sample (\(\bar{S}_j \)), and the average fuzzy standard deviation (\(\bar{S} \)) by Eq. (8) and Eq. (9), respectively:

\[
\bar{S}_j = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} [(X_{a_i}, X_{b_i}, X_c)_j - (\bar{X}_{a_i}, \bar{X}_{b_i}, \bar{X}_c)]^2}
\]
(8)

\[
\bar{S} = (\bar{S}_a, \bar{S}_b, \bar{S}_c) = \left\{ \frac{\sum_{j=1}^{m} S_{aj}}{m}, \frac{\sum_{j=1}^{m} S_{bj}}{m}, \frac{\sum_{j=1}^{m} S_{cj}}{m} \right\}
\]
(9)

In the following we define the steps of another way of calculating standard deviation since the formulations given in Eqs. 8-9 are somewhat complex.

Step 1: The fuzzy mean (\(\bar{X}_a, \bar{X}_b, \bar{X}_c \)) is calculated for each sample with sample size \(n \) by using Eqs. 1-3.

Step 2: If there is no intersection between a TFN of the considered sample and the TFN of that sample’s mean as in Figure 3, the distance \((d_{\text{min}}, d_{\text{mod}}, d_{\text{max}}) \) between the fuzzy number \((X_{a_i}, X_{b_i}, X_c) \) and the fuzzy mean \((\bar{X}_a, \bar{X}_b, \bar{X}_c) \) is calculated by Eqs. 10-12:

\[
d_{\text{min}} = (X_{a_i} - \bar{X}_c)
\]
(10)

\[
d_{\text{mod}} = (X_{b_i} - \bar{X}_b)
\]
(11)

\[
d_{\text{max}} = (X_{c_i} - \bar{X}_a)
\]
(12)

where \(d_{\text{min}} \) is the least distance between the fuzzy numbers; \(d_{\text{mod}} \) is the distance between the mod of fuzzy number and the mod of fuzzy mean; and \(d_{\text{max}} \) is the largest distance between the fuzzy number and the fuzzy mean.

Fig. 3. The distances between fuzzy number and fuzzy mean: the fuzzy number is exactly on the right hand side of fuzzy average.

If the fuzzy number is exactly on the left hand side of the fuzzy average as in Figure 4, thus there is no any intersection between two membership functions, the distance \((d_{\text{min}}, d_{\text{mod}}, d_{\text{max}}) \) between the fuzzy number \((X_{a_i}, X_{b_i}, X_c) \) and the fuzzy average \((\bar{X}_a, \bar{X}_b, \bar{X}_c) \) is calculated by Eqs. 13-15.

\[
d_{\text{min}} = (\bar{X}_a - X_c)
\]
(13)

\[
d_{\text{mod}} = (\bar{X}_b - X_b)
\]
(14)

\[
d_{\text{max}} = (\bar{X}_c - X_a)
\]
(15)

Fig. 4. The distances between fuzzy number and fuzzy mean: the fuzzy number is exactly on the left hand side of fuzzy average.

If there is an intersection (small or large, the size is not important) between membership functions of fuzzy numbers as in Figure 5, the distance \((d_{\text{min}}, d_{\text{mod}}, d_{\text{max}}) \) between the fuzzy number \((X_{a_i}, X_{b_i}, X_c) \) and the fuzzy average \((\bar{X}_a, \bar{X}_b, \bar{X}_c) \) is calculated by Eqs. 16-18.
\[d_{\text{min}} = 0 \quad \text{(16)} \]
\[d_{\text{mod}} = (X_b - \bar{X}_b) \quad \text{(17)} \]
\[d_{\text{max}} = \max \{ (X_c - \bar{X}_a), (\bar{X}_c - X_a) \} \quad \text{(18)} \]

where \(d_{\text{min}} = 0 \).

There may be an intersection between the membership function of a fuzzy value in the sample and the membership function of the fuzzy sample mean. In this case, the distance of these values is equal to zero. This value indicates the minimum distance. Additionally, \(d_{\text{max}} \) represents the maximum distance between the fuzzy value in the sample and the fuzzy sample mean. So, the maximum of \((X_c - \bar{X}_a) \) and \((\bar{X}_c - X_a) \) should be chosen.

![Diagram](image)

Fig. 5. The mod and the largest distance of the fuzzy number value and the fuzzy mean.

Step 3: \((d_{\text{min}}, d_{\text{mod}}, d_{\text{max}})\) are calculated for each value within the sample, being one of the three cases in Step 2. Using these values, the fuzzy standard deviation is calculated as follows:

\[S_{a,j} = \sqrt{\frac{\sum_{i=1}^{m} d_{\text{min},i}^2}{n-1}} \quad \text{(19)} \]
\[S_{b,j} = \sqrt{\frac{\sum_{i=1}^{m} d_{\text{mod},i}^2}{n-1}} \quad \text{(20)} \]
\[S_{c,j} = \sqrt{\frac{\sum_{i=1}^{m} d_{\text{max},i}^2}{n-1}} \quad \text{(21)} \]

where \(i = 1, 2, \ldots, n \) and \(j = 1, 2, \ldots, m \). The average fuzzy standard deviation \((\bar{S}_a, \bar{S}_b, \bar{S}_c)\) is calculated as follows:

\[\bar{S}_a = \frac{\sum_{j=1}^{m} S_{a,j}}{m} \quad \text{(22)} \]
\[\bar{S}_b = \frac{\sum_{j=1}^{m} S_{b,j}}{m} \quad \text{(23)} \]
\[\bar{S}_c = \frac{\sum_{j=1}^{m} S_{c,j}}{m} \quad \text{(24)} \]

After obtaining the fuzzy overall mean \((\bar{X}_a, \bar{X}_b, \bar{X}_c)\) and the average fuzzy standard deviation \((\bar{S}_a, \bar{S}_b, \bar{S}_c)\), the theoretical structure of fuzzy \(\bar{X}\) and \(\bar{S}\) control charts are given in the following section.

4. Fuzzy \(\bar{X}\) and \(\bar{S}\) control charts

4.1. \(\mu\) and \(\sigma\) are not known

The packing process of biscuits can be monitored and controlled by \(\bar{X}\) and \(\bar{S}\) control charts since the weight of biscuits is a quantitative random variable and a standard deviation considers all values in a sample. Upper and lower limits are the two rigid lines in traditional control charts with no flexibility. The fuzzy set theory is an excellent approach to provide flexibility on control limits. So, the fuzzy control charts can be used instead of the traditional control charts. In this application, the packing process is controlled by fuzzy \(\bar{X} - \bar{S}\) control charts and the sample size is 5.

The traditional \(\bar{X}\) control limits are given as follows:

\[UCL_{\bar{X}} = \bar{X} + A_3 \bar{S} \quad \text{(25)} \]
is the standard deviation of sample \(S\)

A control chart coefficient \(b\) is obtained as follows:

\[
\alpha_{control} = \frac{1}{m} \sum_{j=1}^{m} S_j
\]

where \(S_j\) is the standard deviation of sample \(j\) and \(\bar{S}\) is the average of \(S_j\)'s, \(n\) is the sample size and \(m\) is the number of samples.

The theoretical structure of fuzzy \(\widetilde{X} - \bar{S}\) control charts with \(\alpha\)-cuts is widely used in the fuzzy set theory. \(\alpha\)-cut fuzzy \(\widetilde{X}\) control chart limits with standard deviation are obtained as follows:

\[
UCL^\alpha_{\alpha-cut} = (\bar{X}_{a}^{\alpha}, \bar{X}_{b}^{\alpha}, \bar{X}_{c}^{\alpha}) + A_3(S_a^{\alpha}, S_b^{\alpha}, S_c^{\alpha})
\]

\[
LCL^\alpha_{\alpha-cut} = (\bar{X}_{a}^{\alpha}, \bar{X}_{b}^{\alpha}, \bar{X}_{c}^{\alpha}) - A_3(S_a^{\alpha}, S_b^{\alpha}, S_c^{\alpha})
\]

where:

\[
\bar{X}_{a}^{\alpha} = \bar{X}_a + \alpha(S_a - \bar{X}_a)
\]

\[
\bar{X}_{c}^{\alpha} = \bar{X}_c - \alpha(S_c - \bar{X}_c)
\]

and

\[
\bar{S}_a^{\alpha} = \bar{S}_a + \alpha(S_a - \bar{S}_a)
\]

\[
\bar{S}_c^{\alpha} = \bar{S}_c - \alpha(S_c - \bar{S}_c)
\]

4.1.3 \(\alpha\)-level fuzzy midrange for \(\alpha\)-cut fuzzy \(\widetilde{X}\) control chart based on standard deviation

The control limits and center line for \(\alpha\)-cut fuzzy \(\widetilde{X}\) control chart based on standard deviation using \(\alpha\)-level fuzzy midrange are:

\[
UCL^\alpha_{\alpha-cut - \bar{X}} = \frac{1}{2} \bar{X}_a^{\alpha} + \frac{1}{2} \bar{X}_c^{\alpha} + A_3(S_a^{\alpha} + S_c^{\alpha})
\]

\[
CL^\alpha_{\alpha-cut - \bar{X}} = \frac{1}{2} \bar{X}_a^{\alpha} + \frac{1}{2} (CL) + A_3(S_a^{\alpha} + S_c^{\alpha})
\]

\[
LCL^\alpha_{\alpha-cut - \bar{X}} = CL^\alpha_{\alpha-cut - \bar{X}} - A_3(S_a^{\alpha} + S_c^{\alpha})
\]

The definition of \(\alpha\)-level fuzzy midrange of the average of sample \(j\) for fuzzy \(\widetilde{X}\) control chart is

\[
\bar{X}_{\alpha-cut - j} = \frac{1}{2} \left[\frac{1}{2} \bar{X}_a^{\alpha} + \frac{1}{2} (CL) + A_3(S_a^{\alpha} + S_c^{\alpha}) \right]
\]

\[
\bar{X}_{\alpha-cut - j} = \frac{1}{2} \left[\frac{1}{2} \bar{X}_a^{\alpha} + \frac{1}{2} (CL) + A_3(S_a^{\alpha} + S_c^{\alpha}) \right]
\]
The condition of process control for each sample is defined as:

\[
\text{Process control} = \begin{cases}
\text{under control} & \text{if } LCL^a_{mr - S} \leq S^a_{mr - S,j} \leq UCL^a_{mr - S} \\
\text{out-of control} & \text{otherwise}
\end{cases}
\]

(44)

After obtaining \(\alpha \)-cut fuzzy \(\tilde{X} \) control chart with standard deviation using \(\alpha \)-level fuzzy midrange, fuzzy \(\tilde{S} \) control chart is presented as follows.

4.1.4 Fuzzy \(\tilde{S} \) control chart

The traditional \(S \) control chart is given by the following equations:

\[
UCL_S = B_4 \tilde{S}
\]

(45)

\[
CL_S = \tilde{S}
\]

(46)

\[
LCL_S = B_3 \tilde{S}
\]

(47)

where \(B_3 \) and \(B_4 \) are control chart coefficients.\(^{18}\)

Fuzzy \(\tilde{S} \) control chart limits are obtained fuzzy average of standard deviation as follows:

\[
UCL_S = B_4 (\tilde{S}_a, \tilde{S}_b, \tilde{S}_c)
\]

(48)

\[
CL_S = (\tilde{S}_a, \tilde{S}_b, \tilde{S}_c)
\]

(49)

\[
LCL_S = B_3 (\tilde{S}_a, \tilde{S}_b, \tilde{S}_c)
\]

(50)

4.1.5 \(\alpha \)-cut fuzzy \(\tilde{S} \) control chart

When integrating \(\alpha \)-cut approximation to the fuzzy \(\tilde{S} \) control chart, the control limits of \(\alpha \)-cut fuzzy \(\tilde{S} \) control chart are obtained as follows:

\[
UCL^a_{S} = B_4 (\tilde{S}^a_a, \tilde{S}^a_b, \tilde{S}^a_c)
\]

(51)

\[
CL^a_{S} = (\tilde{S}^a_a, \tilde{S}^a_b, \tilde{S}^a_c)
\]

(52)

\[
LCL^a_{S} = B_3 (\tilde{S}^a_a, \tilde{S}^a_b, \tilde{S}^a_c)
\]

(53)

where \((\tilde{S}^a_a, \tilde{S}^a_b, \tilde{S}^a_c) \) are calculated by using Eqs. 38-39.

4.1.6. \(\alpha \)-level fuzzy midrange for \(\alpha \)-cut fuzzy \(\tilde{S} \) control chart

The control limits of \(\alpha \)-level fuzzy midrange for \(\alpha \)-cut fuzzy \(\tilde{S} \) control chart are obtained by the following equations:

\[
\begin{align*}
UCL^a_{mr - S} &= B_4 \ f^a_{mr - S} (C\tilde{L}) \\
CL^a_{mr - S} &= f^a_{mr - S} (C\tilde{L}) = \frac{\tilde{S}^a_a + \tilde{S}^a_c}{2}
\end{align*}
\]

(54)

(55)

\[
LCL^a_{mr - S} = B_3 \ f^a_{mr - S} (C\tilde{L})
\]

(56)

The \(\alpha \)-level fuzzy midrange of standard deviation of sample \(j \) for fuzzy \(\tilde{S} \) control chart is

\[
\frac{S^a_{mr - S,j}}{S^a_{mr - S,j}} = \frac{(S_{aj} + S_{cj}) + \alpha[(S_{bj} - S_{aj}) - (S_{cj} - S_{bj})]}{2} \]

(57)

The condition of process control for each sample is defined as

\[
\begin{cases}
\text{under control} & \text{if } LCL^a_{mr - S} \leq S^a_{mr - S,j} \leq UCL^a_{mr - S} \\
\text{out-of control} & \text{otherwise}
\end{cases}
\]

(58)

4.2. Fuzzy \(\tilde{X} \) control chart when \(\mu \) and \(\sigma \) are known

If the population parameters \(\mu \) and \(\sigma \) are known from past data, these parameters can be used to construct the traditional \(\tilde{X} \) control charts as follows\(^{21}\):

\[
\begin{align*}
UCL_X &= \mu + A\sigma \\
CL_X &= \mu \\
OLC_X &= \mu - A\sigma
\end{align*}
\]

(59)

(60)

(61)

In fuzzy case, fuzzy \(\tilde{X} \) control limits are obtained as in the following:

\[
\begin{align*}
U\tilde{C}L_X &= (\mu_a, \mu_b, \mu_c) + A(\sigma_a, \sigma_b, \sigma_c) \\
&= (\mu_a + A\sigma_a, \mu_b + A\sigma_b, \mu_c + A\sigma_c) \\
C\tilde{L}_X &= (\mu_a, \mu_b, \mu_c)
\end{align*}
\]

(62)

(63)

\[LCL = (\mu_a, \mu_b, \mu_c) - \alpha(\sigma_a, \sigma_b, \sigma_c) = (\mu_a - \lambda \sigma_a, \mu_b - \lambda \sigma_b, \mu_c - \lambda \sigma_c) \quad (64) \]

where \((\mu_a, \mu_b, \mu_c)\) is the fuzzy mean of a population; \((\sigma_a, \sigma_b, \sigma_c)\) is the fuzzy standard deviation of a population, and \(\lambda\) is the constant based on sample size \(n\).

4.2.1. \(\alpha\)-cut fuzzy \(X\) control chart when \(\mu\) and \(\sigma\) are known

\(\alpha\)-cut approximation is combined with fuzzy \(X\) control chart as follows:

\[UCL^\alpha = (\mu_a^\alpha, \mu_b^\alpha, \mu_c^\alpha) + \alpha(\sigma_a^\alpha, \sigma_b^\alpha, \sigma_c^\alpha) = (\mu_a^\alpha + \lambda \sigma_a^\alpha, \mu_b^\alpha + \lambda \sigma_b^\alpha, \mu_c^\alpha + \lambda \sigma_c^\alpha) \quad (65) \]

\[CL^\alpha = (\mu_a^\alpha, \mu_b^\alpha, \mu_c^\alpha) \quad (66) \]

\[LCL^\alpha = (\mu_a^\alpha, \mu_b^\alpha, \mu_c^\alpha) - \alpha(\sigma_a^\alpha, \sigma_b^\alpha, \sigma_c^\alpha) = (\mu_a^\alpha - \lambda \sigma_a^\alpha, \mu_b^\alpha - \lambda \sigma_b^\alpha, \mu_c^\alpha - \lambda \sigma_c^\alpha) \quad (67) \]

where

\[\mu_a^\alpha = \mu_a + \alpha(\mu_b - \mu_a) \quad (68) \]

\[\mu_c^\alpha = \mu_c - \alpha(\mu_c - \mu_b) \quad (69) \]

and

\[\sigma_a^\alpha = \sigma_a + \alpha(\sigma_b - \sigma_a) \quad (70) \]

\[\sigma_c^\alpha = \sigma_c - \alpha(\sigma_c - \sigma_b) \quad (71) \]

4.2.2. \(\alpha\)-level fuzzy midrange for \(\alpha\)-cut fuzzy \(X\) control chart when \(\mu\) and \(\sigma\) are known

By using \(\alpha\)-level fuzzy midrange, the control limits and center line for \(\alpha\)-cut fuzzy \(X\) control chart are obtained as follows:

\[UCL^\alpha_{mr-X} = CL^\alpha_{mr-X} = \frac{CL^\alpha_{mr-X}}{2} \quad (72) \]

\[CL^\alpha_{mr-X} = f^\alpha_{mr-X}(CL) = \frac{CL^\alpha_{mr-X}}{2} \quad (73) \]

\[LCL^\alpha_{mr-X} = CL^\alpha_{mr-X} - A(\sigma_a^\alpha + \sigma_c^\alpha) \quad (74) \]

The \(\alpha\)-level fuzzy midrange of sample \(j\) for fuzzy \(X\) control chart is

\[S^\alpha_{mr-X,j} = \frac{(\bar{X}_a + \bar{X}_c) + \alpha[(\bar{X}_b) - (\bar{X}_a)] - (\bar{X}_c - \bar{X}_b)]}{2} \quad (75) \]

The condition of process control for each sample is defined as:

\[\text{Process control} = \left\{ \begin{array}{ll} \text{under control , for } & LCL^\alpha_{mr-X} \leq S^\alpha_{mr-X,j} \leq UCL^\alpha_{mr-X} \\ \text{out-of control , for otherwise} & \end{array} \right\} \quad (76) \]

5. Application

The application of the developed fuzzy control charts was applied in a biscuit factory in Istanbul Turkey. The factory is one of the largest four in Turkey. Biscuits are packed with a nominal weight of 100 gr. The packing process of biscuits was controlled with fuzzy control charts. Fuzzy data were collected as fuzzy numbers; the sample size was five and the total sample number was twelve. All the fuzzy observations of the first sample are given in Table 1. The fuzzy averages and the fuzzy standard deviations for all the samples, fuzzy overall means and averages of standard deviations are given in Table 1.
Table 1 The fuzzy parameters of the weights of biscuit packets

A. Sample means and distances

<table>
<thead>
<tr>
<th>Sample</th>
<th>X_a</th>
<th>X_b</th>
<th>X_c</th>
<th>d_{min}</th>
<th>d_{mod}</th>
<th>d_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>$\bar{X}_{a,1} = 97.54$</td>
<td>$\bar{X}_{b,1} = 99.66$</td>
<td>$\bar{X}_{c,1} = 100.56$</td>
<td>$S_{a,1} = 0.68$</td>
<td>$S_{b,1} = 2.11$</td>
<td>$S_{c,1} = 4.62$</td>
</tr>
<tr>
<td>S2</td>
<td>$\bar{X}_{a,2} = 98.64$</td>
<td>$\bar{X}_{b,2} = 100.40$</td>
<td>$\bar{X}_{c,2} = 101.34$</td>
<td>$S_{a,2} = 0.02$</td>
<td>$S_{b,2} = 1.41$</td>
<td>$S_{c,2} = 3.11$</td>
</tr>
<tr>
<td>S3</td>
<td>$\bar{X}_{a,3} = 97.8$</td>
<td>$\bar{X}_{b,3} = 101.40$</td>
<td>$\bar{X}_{c,3} = 102.58$</td>
<td>$S_{a,3} = 0.16$</td>
<td>$S_{b,3} = 1.74$</td>
<td>$S_{c,3} = 7.24$</td>
</tr>
<tr>
<td>S4</td>
<td>$\bar{X}_{a,4} = 96.52$</td>
<td>$\bar{X}_{b,4} = 98.52$</td>
<td>$\bar{X}_{c,4} = 99.48$</td>
<td>$S_{a,4} = 0.06$</td>
<td>$S_{b,4} = 1.51$</td>
<td>$S_{c,4} = 4.38$</td>
</tr>
<tr>
<td>S5</td>
<td>$\bar{X}_{a,5} = 99.68$</td>
<td>$\bar{X}_{b,5} = 102.66$</td>
<td>$\bar{X}_{c,5} = 103.50$</td>
<td>$S_{a,5} = 0.00$</td>
<td>$S_{b,5} = 0.53$</td>
<td>$S_{c,5} = 5.25$</td>
</tr>
<tr>
<td>S6</td>
<td>$\bar{X}_{a,6} = 100.00$</td>
<td>$\bar{X}_{b,6} = 100.40$</td>
<td>$\bar{X}_{c,6} = 101.98$</td>
<td>$S_{a,6} = 0.00$</td>
<td>$S_{b,6} = 0.59$</td>
<td>$S_{c,6} = 2.94$</td>
</tr>
<tr>
<td>S7</td>
<td>$\bar{X}_{a,7} = 100.00$</td>
<td>$\bar{X}_{b,7} = 100.58$</td>
<td>$\bar{X}_{c,7} = 102.22$</td>
<td>$S_{a,7} = 0.59$</td>
<td>$S_{b,7} = 1.45$</td>
<td>$S_{c,7} = 4.28$</td>
</tr>
<tr>
<td>S8</td>
<td>$\bar{X}_{a,8} = 98.64$</td>
<td>$\bar{X}_{b,8} = 99.58$</td>
<td>$\bar{X}_{c,8} = 101.00$</td>
<td>$S_{a,8} = 0.00$</td>
<td>$S_{b,8} = 0.69$</td>
<td>$S_{c,8} = 3.72$</td>
</tr>
<tr>
<td>S9</td>
<td>$\bar{X}_{a,9} = 99.74$</td>
<td>$\bar{X}_{b,9} = 100.98$</td>
<td>$\bar{X}_{c,9} = 101.94$</td>
<td>$S_{a,9} = 0.50$</td>
<td>$S_{b,9} = 2.15$</td>
<td>$S_{c,9} = 4.38$</td>
</tr>
<tr>
<td>S10</td>
<td>$\bar{X}_{a,10} = 96.28$</td>
<td>$\bar{X}_{b,10} = 98.16$</td>
<td>$\bar{X}_{c,10} = 99.38$</td>
<td>$S_{a,10} = 0.00$</td>
<td>$S_{b,10} = 0.48$</td>
<td>$S_{c,10} = 4.16$</td>
</tr>
<tr>
<td>S11</td>
<td>$\bar{X}_{a,11} = 97.14$</td>
<td>$\bar{X}_{b,11} = 98.50$</td>
<td>$\bar{X}_{c,11} = 99.36$</td>
<td>$S_{a,11} = 0.12$</td>
<td>$S_{b,11} = 1.32$</td>
<td>$S_{c,11} = 3.53$</td>
</tr>
<tr>
<td>S12</td>
<td>$\bar{X}_{a,12} = 99.48$</td>
<td>$\bar{X}_{b,12} = 100.14$</td>
<td>$\bar{X}_{c,12} = 101.46$</td>
<td>$S_{a,12} = 0.07$</td>
<td>$S_{b,12} = 1.24$</td>
<td>$S_{c,12} = 3.17$</td>
</tr>
<tr>
<td>Overall mean</td>
<td>$\bar{X}_a = 98.46$</td>
<td>$\bar{X}_b = 100.08$</td>
<td>$\bar{X}_c = 101.23$</td>
<td>$\bar{S}_a = 0.18$</td>
<td>$\bar{S}_b = 1.27$</td>
<td>$\bar{S}_c = 4.23$</td>
</tr>
</tbody>
</table>

B. Fuzzy values of Sample 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>X_a</th>
<th>X_b</th>
<th>X_c</th>
<th>d_{min}</th>
<th>d_{mod}</th>
<th>d_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-1</td>
<td>95.8</td>
<td>96.2</td>
<td>98.9</td>
<td>1.36</td>
<td>3.46</td>
<td>4.76</td>
</tr>
<tr>
<td>S1-2</td>
<td>98.1</td>
<td>101.7</td>
<td>101.9</td>
<td>0.00</td>
<td>2.04</td>
<td>4.36</td>
</tr>
<tr>
<td>S1-3</td>
<td>100.4</td>
<td>100.9</td>
<td>101.2</td>
<td>0.16</td>
<td>1.24</td>
<td>3.66</td>
</tr>
<tr>
<td>S1-4</td>
<td>96.2</td>
<td>100</td>
<td>100.3</td>
<td>0.00</td>
<td>0.34</td>
<td>4.36</td>
</tr>
<tr>
<td>S1-5</td>
<td>97.2</td>
<td>99.5</td>
<td>100.5</td>
<td>0.00</td>
<td>0.16</td>
<td>3.36</td>
</tr>
</tbody>
</table>
Application of Fuzzy \tilde{X} control chart with standard deviation

After calculating the fuzzy parameters of the weights of biscuit packets, the limits of fuzzy \tilde{X} control chart with standard deviation have been obtained as follows:

$$ UCL_\tilde{X} = (\tilde{x}_a + A_3 \tilde{s}_a, \tilde{x}_b + A_3 \tilde{s}_b, \tilde{x}_c + A_3 \tilde{s}_c) = (98.46 + (1.427)0.18, 100.8 + (1.427)1.27, \quad (77)$$

$$ = (98.71, 102.61, 107.26) $$

$$ CL_\tilde{X} = (\tilde{x}_a, \tilde{x}_b, \tilde{x}_c) = (98.46, 100.8, 101.23) \quad (78) $$

$$ LCL_\tilde{X} = (\tilde{x}_a - A_3 \tilde{s}_a, \tilde{x}_b - A_3 \tilde{s}_b, \tilde{x}_c - A_3 \tilde{s}_c) = (98.46 - (1.427)4.23, 100.8 - (1.427)1.27, \quad (79)$$

$$ = (92.42, 98.98, 100.9) $$

where $A_3 = 1.427$ for $n = 5$.

α-cut fuzzy \tilde{X} control chart limits with standard deviation are obtained as follows:

$$ UCL_\tilde{X}^{0.55} = (\tilde{x}_a^{0.55} + A_3 \tilde{s}_a^{0.55}, \tilde{x}_b + A_3 \tilde{s}_b), \quad (80) $$

$$ = (99.75 + (1.427)0.78, 100.8 + (1.427)1.27, 100.99 + (1.427)2.60) $$

$$ = (100.86, 102.61, 104.70) $$

$$ CL_\tilde{X}^{0.55} = (\tilde{x}_a^{0.55}, \tilde{x}_b^{0.55}, \tilde{x}_c^{0.55}) = (99.75, 100.8, 100.99) \quad (81) $$

$$ LCL_\tilde{X}^{0.55} = (\tilde{x}_a^{0.55} - A_3 \tilde{s}_a^{0.55}, \tilde{x}_b - A_3 \tilde{s}_b), \quad (82) $$

$$ = (99.75 - (1.427)2.60, 100.8 - (1.427)1.27, 100.99 - (1.427)0.78) $$

$$ = (96.04, 98.98, 99.88) $$

where $\alpha = 0.55$. α-cut represents the cutting point of the membership. The values of α-cut are determined as 0.65 in metal processing in the literature. Due to the sensitivity of packing process of biscuits is less than metal processing, α-cut is selected less than 0.65 in this study.

$$ \tilde{x}_a^\alpha = \tilde{x}_a + \alpha(\tilde{x}_b - \tilde{x}_a) \quad (83) $$

$$ \tilde{x}_c^\alpha = \tilde{x}_c - \alpha(\tilde{x}_c - \tilde{x}_b) \quad (84) $$

$$ S_{a}^{\alpha} = S_a + \alpha(S_b - S_a) \quad (85) $$

$$ S_{c}^{\alpha} = S_c - \alpha(S_c - S_b) \quad (86) $$

The control limits and center line for α-cut fuzzy \tilde{X} control chart with standard deviation using α-level fuzzy midrange are

$$ UCL_\tilde{X}^{\alpha} = CL_\tilde{X}^{\alpha} + A_3 (\tilde{s}_a^\alpha + \tilde{s}_b^\alpha) \quad (87) $$

$$ = 100.37 + 1.427 (0.78 + 2.60) = 102.78 $$

$$ CL_\tilde{X}^{\alpha} = f^{\alpha}_{\text{mid}}(CL) \quad (88) $$

$$ = \frac{\tilde{x}_a^\alpha + \tilde{x}_c^\alpha}{2} \quad (89) $$

$$ = \frac{99.75 + 100.99}{2} = 100.37 $$

$$ LCL_\tilde{X}^{\alpha} = CL_\tilde{X}^{\alpha} - A_3 (\tilde{s}_a^\alpha + \tilde{s}_b^\alpha) \quad (90) $$

$$ = 100.37 - 1.427 (0.78 + 2.60) = 97.95 $$

The α-level fuzzy midrange of sample j for fuzzy \tilde{X} control chart, $S_{a-\tilde{X},j}^{\alpha}$, and the condition of process control for each sample are given in the second and third columns in Table 2.

Fuzzy \tilde{S} control chart

After evaluating the fuzzy averages with fuzzy \tilde{X} control chart of the packing process of biscuits, the fuzzy standard deviation of the packing process of biscuits are given in the following:

$$ UCL_S = B_4 (\tilde{s}_a, \tilde{s}_b, \tilde{s}_c) \quad (91) $$

$$ = 2.089 (0.18, 1.27, 4.23) = (0.37, 2.65, 8.83) $$
The control limits of α-cut fuzzy \tilde{S} control chart are obtained as follows:

$$\begin{align*}
\text{LCL}_{S} &= B_3(\tilde{S}_a, \tilde{S}_b, \tilde{S}_c) = (0.18, 1.27, 4.23) \\
\text{UCL}_{S} &= B_4(\tilde{S}_a, \tilde{S}_b, \tilde{S}_c) = (0, 0, 0)
\end{align*}$$

where $B_4 = 2.089$ and $B_3 = 0$ for $n = 5$.

The control limits of α-cut fuzzy \tilde{S} control chart are given in the following:

$$\begin{align*}
\text{LCL}^{\alpha}_{S} &= B_3(\tilde{S}^{\alpha}_a, \tilde{S}^{\alpha}_b, \tilde{S}^{\alpha}_c) \\
\text{UCL}^{\alpha}_{S} &= B_4(\tilde{S}^{\alpha}_a, \tilde{S}^{\alpha}_b, \tilde{S}^{\alpha}_c)
\end{align*}$$

where $B_4 = 2.089(1.69) = 3.53$

$$\begin{align*}
\text{LCL}^{\alpha}_{S} &= \frac{\tilde{S}^{\alpha}_a + \tilde{S}^{\alpha}_c}{2} = \frac{0.78 + 2.60}{2} = 1.69
\end{align*}$$

The control limits of α-level fuzzy midrange for α-cut fuzzy \tilde{S} control chart are given in the following:

Table 2: Control limits using α-level fuzzy midrange for α-cut fuzzy \tilde{X} and \tilde{S} control charts

<table>
<thead>
<tr>
<th>Sample no</th>
<th>$S_{mr-S,j}$</th>
<th>$97.95 \leq S_{mr-S,j} \leq 102.78$</th>
<th>$0 \leq S_{mr-S,j} \leq 3.53$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99.4</td>
<td>Under control</td>
<td>Under control</td>
</tr>
<tr>
<td>2</td>
<td>100.2</td>
<td>Under control</td>
<td>Under control</td>
</tr>
<tr>
<td>3</td>
<td>100.9</td>
<td>Under control</td>
<td>Under control</td>
</tr>
<tr>
<td>4</td>
<td>98.3</td>
<td>Under control</td>
<td>Under control</td>
</tr>
<tr>
<td>5</td>
<td>102.2</td>
<td>Under control</td>
<td>Under control</td>
</tr>
<tr>
<td>6</td>
<td>100.7</td>
<td>Under control</td>
<td>0.98</td>
</tr>
<tr>
<td>7</td>
<td>100.8</td>
<td>Under control</td>
<td>1.89</td>
</tr>
<tr>
<td>8</td>
<td>99.7</td>
<td>Under control</td>
<td>1.21</td>
</tr>
<tr>
<td>9</td>
<td>100.9</td>
<td>Under control</td>
<td>2.28</td>
</tr>
<tr>
<td>10</td>
<td>98.0</td>
<td>Under control</td>
<td>1.20</td>
</tr>
<tr>
<td>11</td>
<td>98.4</td>
<td>Under control</td>
<td>1.55</td>
</tr>
<tr>
<td>12</td>
<td>100.3</td>
<td>Under control</td>
<td>1.41</td>
</tr>
</tbody>
</table>
6. Conclusion

Control charts in SPC have very common usage in practice. But if there is uncertainty or impression in data, the process should be controlled with the fuzzy sets. Fuzzy control charts provide flexibility to upper and lower limits.

There are two contribution of this paper:

1. A new way of calculating fuzzy standard deviation has been proposed in Section 3. So, the difficulty of calculating fuzzy standard deviation with fuzzy numbers is removed and it can be easily used in fuzzy \bar{X} and \bar{S} control charts. Also, the application of fuzzy \bar{X} and \bar{S} control charts has been illustrated in a food industry for evaluating the packing process of biscuits.

2. The theoretical structure of fuzzy \bar{X} and \bar{S} control charts has been proposed for the case that the population parameters (μ and σ) are known. For further research, other membership functions like trapezoidal or L-R type can be used in the developed control charts.

References

[13]. Sentürk, S., Erginel, N. (2009). Development of fuzzy $\bar{X} - \bar{R}$ and $\bar{X} - \bar{S}$ control charts using α-cuts. Information Sciences, 179, 1542-1551.

