
Combining Penalty Function with Modified Chicken Swarm Optimization 
for Constrained Optimization 

Y.L. Chen1,2,3, P.L. He1,2 & Y.H. Zhang1,2 
1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan, China 

2Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu, Sichuan, China 
3University of Chinese Academy of Sciences, Beijing, China 

Keywords: Chicken Swarm Optimization; Bio-inspired algorithm; Nonlinear constraints; Penalty 
function; Optimization applications. 

Abstract. In many mechanical designs, such as airborne electro-optical platform, optical lenses, 
mechanical containers, speed reducer, and so on, lightweight design has always been our goal. 
Under various constraints, obtaining the minimum of some parameter is the optimization problem 
we often encounter in the engineering works. Chicken Swarm Optimization (CSO), a new bio-
inspired algorithm, is namely applied to deal with these kinds of problems. This paper firstly 
describes the origin and the basic model of the CSO and shows the result of applying the CSO to 
the algorithm test functions and a fair statistical comparison of the CSO with Bat Algorithm (BA) 
and modified Bat Algorithm based on Differential Evolution (DEBA) on the same test functions. 
Then, the CSO algorithm is modified. After that, the modified CSO is used to do the test on the 
previous test functions in order to be compared with the basic CSO, BA and DEBA. Finally, the 
modified CSO is combined with a dynamic penalty function to solve nonlinear constrained 
optimization problems and compared with other algorithms. From the results of all the tests, we can 
see that the CSO outperforms many other algorithms or their modified ones in terms of both 
optimization accuracy and stability. However, the modified CSO gets better performances than the 
CSO. As well, the modified CSO combined with penalty function is better than the CSO and many 
other optimization algorithms for constrained optimization problems. 

Introduction 
CSO algorithm (Meng, X.B. et al. 2014) was proposed on the Sixth International Conference on 
Swarm Intelligence in 2014. Through the observation of the individual and the entire flock of 
chickens, the researchers found that chicken has mature cognitive ability, communication skill and 
learning ability, and in the flock there exists an almost strict hierarchical order, similar to our teams. 
Flock activity exhibits complex and efficient swarm intelligence, which can be associated with the 
objective problem to be optimized. For example, in the optimization design for inner frame of 
airborne electro-optical platform, in order to improve the dynamic performance of airborne electro-
optical platform and reduce the adverse effect of vibration environment on image quality, there 
needs to minimize the combined compliance index with the constraint that the fundamental 
frequency is below a certain value (Wang, P. et al. 2014). 

Through ideally modeling the flock structure, identity of chicken, chickens’ relationships and 
foraging law, researchers got this new bio-inspired algorithm. 

Mimicking flock activity pattern and foraging law, the CSO gathers the whole wisdom of the 
flock. The CSO, owning the characteristics of simplicity and good scalability, is a naturally 
adaptive multiple swarm algorithm. Like many swarm intelligence algorithms, the CSO is a kind of 
stochastic optimization algorithm, using an iterative approach to solve the objective problem. Thus 
it just needs low mathematical analyticity and doesn’t require that the target function is derivable. It 
can handle not only continuous problems but also discrete problems. Besides, its parameter 
configuration is simple. 
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Mathematical Model 
The mathematical model of the CSO can be understood in the following way: firstly, confirm the 
flock structure, namely the number of the roosters, the hens, the chicks and the mother hens; 
secondly, set fixed identities for all of the chickens; thirdly, establish the mathematical model by 
chickens’ identities and their foraging laws; and fourthly, set a certain interval to update the 
relationship of chickens regularly. 
Flock Structure 
Suppose there are N chickens in total in the flock. The proportion of roosters and hens is rp and hp, 
respectively. In hens, the proportion of mother hens is mp. Assume RN, HN, CN and MN indicate 
the number of the roosters, the hens, the chicks and the mother hens, respectively. Then the 
relationship among them can be expressed as follows. 

*RN N rp=  (1) 

*HN N hp=  (2) 

CN N RN HN= − −  (3) 

*MN HN mp=  (4) 

The sizes of RN, HN, CN and MN directly decide the flock structure, which is one of the main 
factors that affect the performance of the CSO. From the optimization goal and the natural law, HN 
should be greater than RN, because hens can bring more benefits, such as eggs. Obviously, HN 
should also be greater than MN, because not all hens feed chicks. The model also sets the number of 
adult chickens to be greater than the number of chicks, CN (Meng, X.B. et al. 2014). 
Indentity of Chicken 
Assume that all the chickens are depicted by their own two properties, “fitness” and “position”. So 
the model is built as follows. 
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Where t represents time step. N is the total number of chickens. D represents the dimension of 
the space in which the chickens can search for food. f denotes the value of “fitness”, which 
corresponds to the value of the objective function. x represents the “position”, which corresponds to 
the decision variables in the optimization problem to be solved. In this model, the aim of 
optimization is obtaining the minimum. Therefore, the smaller the value of f, the better the 
chicken’s fitness (Meng, X.B. et al. 2014). 
Foraging Law 
According to the foraging law and identities of chickens, the authors of the literature (Meng, X.B. et 
al. 2014) proposed the core part of the CSO, that is, the movement of the chickens. 

Rooster Model 
The rooster model is built by the truth that the roosters with better fitness values can search for food 
in a wider range of place than those with worse fitness values (Meng, X.B. et al. 2014). This is 
formulated below. 
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Where N(0, σ2) is a normal distribution with mean 0 and standard deviation σ. ε is the smallest 
constant in the computer, which is used to avoid zero-division-error. k is a rooster’s index, 
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randomly selected from the rooster groups. The kth rooster is different from the ith rooster. f is the 
fitness value corresponding to x (Meng, X.B. et al. 2014). 

From the established model, we can analyze the activity range of the current rooster. If fi ≤ fk, 
then σ=1. Thus, the current ith rooster has better fitness, and it will have a wider range of activity 
next time. If fi > fk, then 0<σ<1. Thus, the current ith rooster has worse fitness, and it will have a 
narrower range of activity next time. 

Hen Model 
Hen groups are more complex and diverse than rooster groups and chick groups. Hens can follow 
their group-mate rooster to search for food or do it by themselves. Hen would randomly steal the 
good food found by others. The more dominant hens would have advantage in searching for food. 
Besides, a part of hens will raise their own chicks (Meng, X.B. et al. 2014). These situations can be 
represented by the following formula. 
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2 2exp( )r ic f f= −  (10) 

Where U1(0,1) and U2(0,1) are uniform distributions over [0, 1]. r1∈[1, N], is the index of the 
head rooster in the ith hen’s group. r2∈[1, N], is the index of a chicken different from the rooster 
r1, which is selected randomly from a specific group. In the specific group, every chicken’s fitness 
value is better than the ith hen’s. 

Thus, c2<1<c1 only if fi > fr1 and fi > fr2. If c1=0, then the ith hen wouldn’t move around her 
head rooster, and it will search for food by herself. The smaller the ith hen’s fitness value, the 
nearer c1 approximates to 1 and the smaller the gap of positions between the ith hen and her head 
rooster. The larger the difference between fi and fr2, the larger the gap of positions between the ith 
hen and the chicken r2 and the smaller c2. Therefore, the ith hen couldn’t easily steal the food found 
by the chicken r2. If c2=0, then the ith hen would search for food on her own territory. In addition, 
there exist competitions in the group, so the equation forms between c1 and c2 are different (Meng, 
X.B. et al. 2014). 

Chick Model 
The chicks move around their mother to search for food (Meng, X.B. et al. 2014). Use relatively 
simple way to simulate their activities below. 

, , , ,( 1) ( ) *( ( ) ( ))i j i j m j i jx t x t FM x t x t+ = + −  (11) 

Where xm,j(t) indicates the position of the ith chick’s mother (m∈[1, N]). FM is a parameter (FM
∈(0, 2)). For different chicks, the values of FM will be selected randomly. In practice, FM, 
belonging to the interval [0.4, 1], generally performed well. 
Relationship Update 
In addition to the model described above, there are two key parameters in the CSO, that is, the total 
number of iterations M and the interval of relationship update G. For M and G, they should be set to 
select suitable values based on the particular problem. If G is too large, it is not conducive to 
convergence to the global optimum quickly for the CSO; if G is too small, the algorithm may fall 
into local optimum. Typically, G∈[2, 20] would be a good choice (Meng, X.B. et al. 2014). 
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Tests of CSO 
The CSO can directly deal with most unconstrained optimization problems similar to Benchmark 
functions. Moreover, when dealing with such problems, the algorithm exhibits excellent 
performance. This section selects a part of the standard test functions in the literature (Xiao, H.H. & 
Duan, Y.M. 2014) to test the CSO, and then compares the results with the data in the literature 
(Xiao, H.H. & Duan, Y.M. 2014). Test functions are shown in Table 1. 

In order to reflect the consistency of test, we ran the program of the CSO 20 times for each test 
function independently, and ensured that the parameters were same for each test function. The 
parameter settings of the CSO are shown in Table 2. List the best value, the worst value, the mean 
and the standard deviation of the results obtained by the CSO, and compare them with the data 
listed in the literature (Xiao, H.H. & Duan, Y.M. 2014). The experimental results, which are shown 
in Table 3, demonstrates that the performance of the CSO are much better than BA (Yang, X.S. 
2010) and DEBA. All the original data created by the program of the CSO in the table are rounded 
and the first 9 digits after the decimal point are preserved below. 

Modified Chicken Swarm Optimization (m-CSO) 
In the flock, the number of roosters and chicks are smaller than that of hens, and their structures are 
relatively simple. The number of hens is the biggest, and the hens’ structure is the most complex in 
the flock. Therefore, the hen model would directly affect the performance of the CSO. Through 
many times experiments, we analyzed the whole model of the CSO, modified the latter part of the 
hen model following the chick model, and kept the rest remained. The equation (8) was changed to 
the form below, that equation (12). 
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Table 1.  Test functions 
ID Name Expressions and Conditions Optimum 
F1 Schaffer F6 2 2 2

1 2
1 2 2 2
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Table 2.  Parameter settings 

________________________________________________ 
M   N   G   rp   hp   mp  FM 

________________________________________________ 
1000  100  10   0.2  0.6  0.1  [0.5, 0.9] 
________________________________________________ 

 
Table 3.  Statistical comparison of CSO with BA and DEBA on F1-F3 

Function Algorithm Best Worst Mean Std. 
F1 BA -0.921810818 -0.511191588 -0.640175003 1.240439745e-01 

DEBA -1 -0.999438907 -0.999925903 1.321207680e-04 
CSO -1 -1 -1 0 

F2 BA 48.356822946 4.884648927e+02 1.934004011e+02 1.142338058e+02 
DEBA 3.773594144e-07 3.907074747e-05 1.314841126e-05 1.105930329e-05 
CSO 0 0 0 0 

F3 BA 4.138213137e+03 5.382751350e+07 1.013266796e+07 1.372576961e+07 
DEBA 22.860694188 88.599479455 55.249891509 17.805778520 
CSO 6.339087813 7.226184561 6.942939149 0.322589855 
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Table 4.  Optimization results of m-CSO on the function F3 
Function Algorithm Best Worst Mean Std. M 
F3 m-CSO 1.677240079 2.802966172 2.240676430 0.332482466 1000 

0.081880091 0.180520462 0.127903339 0.030576332 2000 
0.005862121 0.027200427 0.015156016 0.004572982 3000 
0.001201132 0.004775559 0.002830799 8.357847107e-04 4000 

 
The modified CSO algorithm, hereinafter referred to as the m-CSO algorithm, was tested 

independently on the third test functions F3 with the same parameters and the same running times. 
The results given by the program of the m-CSO are shown in Table 4 below. The parameter settings 
are same as above shown in Table 2. Obviously, with the same parameters, the m-CSO is superior 
to the CSO considering optimization accuracy and stability. Based on this, if only increasing the 
number of iterations, higher accuracy and stability can be achieved. 

Applying Penalty Function to m-CSO for Constrained Optimization 
In this paper, a penalty function was combined with the m-CSO, hereinafter referred to the pm-CSO 
algorithm, to solve the nonlinear constrained optimization problem containing the inequality 
constraints and the equality constraints.  
Constrained Optimization Problem 
The general form of constrained optimization problem is depicted as follows. 

{
min ( )
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ni
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f x
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Where, x=(x1, x2, …, xn) represents the decision variables. gi(x) and hi(x), respectively, 
represent the inequality constraints and the equality constraints. Generally, the equality constraints 
hi(x)=0 can be transformed to the inequality constraints –σ≤ hi(x)≤σ. σ is the tolerance limit of the 
equality constraints (Mi, Y.Q. & Gao, Y.L. 2015). In the constrained optimization problem, 
max[f(x)]↔min[–f(x)], and gi(x)≥0↔(–gi(x)≤0), so the formula (13) can represent all the 
constrained optimization problems. 
Penalty Function 
In the course of solving constrained optimization problems, how to deal with the constraints is the 
key. The quality of processing the constraints is directly related to the quality of the final result. In 
this paper, a classical method to deal with the constraints was adopted, that is, the penalty function 
method. Although there were many different forms of penalty functions, the core of the penalty 
function method for constrained optimization problems had never been changed. That is, by 
weighting on the inequality constraints and the equality constraints, then combining them with the 
original objective function, a new objective function is created to replace the original one. Using 
such a simple method, the original constrained optimization problems are transformed to the 
unconstrained ones (Mi, Y.Q. & Gao, Y.L. 2015). 

In this paper, a dynamic penalty function method was selected to handle constrained 
optimization problems (Yang, J.M. et al. 1997) as follows. 
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Where F(x, t) is the new objective function, a function of the decision variables x and the time 
step t. f(x) is the original objective function. d(t) is the penalty factor. p(x) is a penalty term. condi(x) 
is the degree function to violate the ith constraint. αi and βi are different levels of punishment 
function and punishment intensity. About d(t), the selection depends on the specific circumstance. 

Thus, the original constrained optimization problems can be transformed to equivalent 
unconstrained ones, that is, min[f(x)]↔min[F(x, t)]. The following is to validate the performance of 
the pm-CSO using two practical engineering problems. 
Experiments and Analyses 
Experiment 1: QQR-T1-4 Problem 
The mathematical model of QQR-T1-4 problem (Hock, W. & Schittkowski, K. 1981) is expressed 
as follows. 

22 ,2 21 1min ( ) ( 2) ( 1) , ( )f x x x x x x= − + − =  (20a) 
21 221
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Table 5.  Optimization results of QQR-T1-4 by pm-CSO 
Number f x1 x2 g1 h2 
1 1.393464981 0.822875656 0.911437828 -1.33095757e-11 -2.39808e-14 
2 1.393464989 0.822875652 0.911437826 -4.731791958e-09 -3.89470678e-11 
3 1.393466416 0.822875074 0.911437452 -9.235509753e-07 1.694994745e-07 
4 1.393464994 0.822875650 0.911437825 -7.219941978e-09 2.87960766e-11 
5 1.393466749 0.822874932 0.911437466 -9.573716975e-07 -9.1955332e-12 
6 1.393564702 0.822834897 0.911416575 -5.550970447e-05 1.747053610e-06 
7 1.393465451 0.822875463 0.911437733 -2.518178630e-07 -3.219815081e-09 
8 1.393477181 0.822870688 0.911434971 -7.250921217e-06 7.458435856e-07 
9 1.393464988 0.822875652 0.911437826 -4.120968455e-09 1.50921498e-11 
10 1.393501268 0.822860841 0.911429871 -2.059876895e-05 1.097870112e-06 

 
This is a typical nonlinear optimization problem containing equality constraints and inequality 

constraints. Until now, there have been many scholars who had studied it. Literatures (Homaifar, A. 
et al. 1994, Fogel, D.B. 1995, Myung, H. et al. 1995, Yang, J.M. et al. 1997) showed us this issue. 
Literature (Yang, J.M. et al. 1997) listed the result of this issue, that is, f =1.3934651, which 
corresponds to the value of the decision variables (x1, x2) = (0.8228756, 0.9114378). It is the best 
currently known result. 

Using the pm-CSO to solve this problem, and running the program 10 times independently, we 
got the results shown in Table 5. The parameters were same as ones in Table 2 except M. M is 2000 
for this issue. And, the penalty factor d(t) is “0.0025*t”. As can be seen from the table, all the 
function values belong to the range [1.393464980713918, 1.393564702486817]; all the decision 
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variables and inequality constraints are to meet the requirements; only equality constraints fluctuate 
around 0. In all results, we found that the 1st, 2nd, 4th, 9th result are relatively closer to the known 
optimum, and the precision of the first result is the highest. If the accuracy of equality constraints 
can be appropriately set to a little wider, we can say that the first result is better than the best 
currently known results. 

Experiment 2: Speed Reducer Design 
The mathematical model of speed reducer design problem (Reynolds, R. & Ali, M. 2008) is 
expressed as follows. 
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Use the pm-CSO to optimize this problem, run the program independently 20 times, and 
compare the result of the pm-CSO with ones of other optimization algorithms. The results are 
shown in Table 6. The parameter settings are same as above shown in Table 2. For this issue, the 
penalty factor d(t) was “t*t0.5”. 

Table 6.  Optimization results of the speed reducer design 
Algorithm Best Worst Mean Std. 
Robert, et al (Reynolds, 
R. & Ali, M. 2008) 

SFI(lBest) 3000.737 3044.332 3015.026 9.95 
SFI(square) 2996.974 3007.301 3000.278 2.804 
SFI(gBest) 2998.991 3034.973 3011.062 9.105 

Mezura, et al (Mezura, M.E. & 
Hernandez, O.B. 2009) 

2999.264 N/A 3014.759 11.0 

Akay, et al (Akay, B. & Karaboga, D. 
2012) 

2997.05841 N/A 2997.05841 0 

Gandomi, et al (Gandomi, A.H., Yang, 
X.S. & Alavi, A.H. 2013) 

3000.981 3009 3007.2 4.963 

CSO (Meng, X.B. et al. 2014) 2996.605 3007.258 2997.764 0.165 
pm-CSO 2996.348164995 2996.348505298 2996.348205146 8.912827902e-

05 
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According to the table above, the optimal value obtained by the pm-CSO is 2996.348164995. 

The decision variables corresponding to the optimal value are 
x = (3.500000000004351, 0.700000000000000, 17.000000000005702, 7.300000000000000, 

7.800000000107652, 3.350214666099439, 5.286683229790418). 
The corresponding constraints are 

g = (0.926084719600665, 0.802001472856516, 0.500827751895624, 0.098528302386299, 
0.999999999997317, 0.999999999981577, 0.297500000000100, 0.999999999998757, 
0.416666666667185, 0.948674246458789, 0.989147634956792). 

From the results, the pm-CSO is better than another seven kinds of optimization algorithms, 
including the CSO. Compared with the original CSO, the pm-CSO has greatly improved the 
performance, whether the optimization accuracy or stability. 

Conclusions and Discussions 
As a new bio-inspired algorithm, the CSO inherits many advantages of other algorithms. In dealing 
with most unconstrained optimization problems, the CSO demonstrated its excellent performance. It 
can be far better than many of the current optimization algorithms in terms of the optimization 
precision and stability. However, the basic CSO could not perform satisfactorily while dealing with 
some specific unconstrained optimization problems and constrained ones. By modifying the original 
hen model of the CSO, we got the m-CSO, which performed better in the specific problems the 
CSO couldn’t deal with well. The test results in section 3 illustrated this point well. 

In addition, we selected a dynamic penalty function to combine with the m-CSO for complex 
constrained optimization problems. Like this, we got the pm-CSO. With penalty function, the 
constrained optimization problems could be transformed to unconstrained ones. Then the pm-CSO 
can quickly optimize these unconstrained optimization problems. In this paper, the modification of 
the CSO and the combination with the penalty function make the CSO obtain more advantages in 
dealing with the optimization problem. The pm-CSO will be largely beneficial to solving 
engineering optimization problems such as the lightweight design of airborne electro-optical 
platform. 

Of course, there are still many aspects about the CSO we can study. The initial parameters 
directly decide the flock structure and the update interval of flock relationship. And their changes 
will affect the overall performance of the CSO. Moreover, the dynamic penalty function selected in 
this paper could not deal with all the constrained optimization problems. For different constrained 
optimization problems, the pm-CSO needs different penalty factors and initial values of the 
objective function to prevent the algorithm to diverge in the iterative process. 
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