
Combining Penalty Function with Modified Chicken Swarm Optimization
for Constrained Optimization

Y.L. Chen1,2,3, P.L. He1,2 & Y.H. Zhang1,2
1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan, China

2Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu, Sichuan, China
3University of Chinese Academy of Sciences, Beijing, China

Keywords: Chicken Swarm Optimization; Bio-inspired algorithm; Nonlinear constraints; Penalty
function; Optimization applications.

Abstract. In many mechanical designs, such as airborne electro-optical platform, optical lenses,
mechanical containers, speed reducer, and so on, lightweight design has always been our goal.
Under various constraints, obtaining the minimum of some parameter is the optimization problem
we often encounter in the engineering works. Chicken Swarm Optimization (CSO), a new bio-
inspired algorithm, is namely applied to deal with these kinds of problems. This paper firstly
describes the origin and the basic model of the CSO and shows the result of applying the CSO to
the algorithm test functions and a fair statistical comparison of the CSO with Bat Algorithm (BA)
and modified Bat Algorithm based on Differential Evolution (DEBA) on the same test functions.
Then, the CSO algorithm is modified. After that, the modified CSO is used to do the test on the
previous test functions in order to be compared with the basic CSO, BA and DEBA. Finally, the
modified CSO is combined with a dynamic penalty function to solve nonlinear constrained
optimization problems and compared with other algorithms. From the results of all the tests, we can
see that the CSO outperforms many other algorithms or their modified ones in terms of both
optimization accuracy and stability. However, the modified CSO gets better performances than the
CSO. As well, the modified CSO combined with penalty function is better than the CSO and many
other optimization algorithms for constrained optimization problems.

Introduction
CSO algorithm (Meng, X.B. et al. 2014) was proposed on the Sixth International Conference on
Swarm Intelligence in 2014. Through the observation of the individual and the entire flock of
chickens, the researchers found that chicken has mature cognitive ability, communication skill and
learning ability, and in the flock there exists an almost strict hierarchical order, similar to our teams.
Flock activity exhibits complex and efficient swarm intelligence, which can be associated with the
objective problem to be optimized. For example, in the optimization design for inner frame of
airborne electro-optical platform, in order to improve the dynamic performance of airborne electro-
optical platform and reduce the adverse effect of vibration environment on image quality, there
needs to minimize the combined compliance index with the constraint that the fundamental
frequency is below a certain value (Wang, P. et al. 2014).

Through ideally modeling the flock structure, identity of chicken, chickens’ relationships and
foraging law, researchers got this new bio-inspired algorithm.

Mimicking flock activity pattern and foraging law, the CSO gathers the whole wisdom of the
flock. The CSO, owning the characteristics of simplicity and good scalability, is a naturally
adaptive multiple swarm algorithm. Like many swarm intelligence algorithms, the CSO is a kind of
stochastic optimization algorithm, using an iterative approach to solve the objective problem. Thus
it just needs low mathematical analyticity and doesn’t require that the target function is derivable. It
can handle not only continuous problems but also discrete problems. Besides, its parameter
configuration is simple.

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

© 2015. The authors - Published by Atlantis Press 1899

Mathematical Model
The mathematical model of the CSO can be understood in the following way: firstly, confirm the
flock structure, namely the number of the roosters, the hens, the chicks and the mother hens;
secondly, set fixed identities for all of the chickens; thirdly, establish the mathematical model by
chickens’ identities and their foraging laws; and fourthly, set a certain interval to update the
relationship of chickens regularly.
Flock Structure
Suppose there are N chickens in total in the flock. The proportion of roosters and hens is rp and hp,
respectively. In hens, the proportion of mother hens is mp. Assume RN, HN, CN and MN indicate
the number of the roosters, the hens, the chicks and the mother hens, respectively. Then the
relationship among them can be expressed as follows.

*RN N rp= (1)

*HN N hp= (2)

CN N RN HN= − − (3)

*MN HN mp= (4)

The sizes of RN, HN, CN and MN directly decide the flock structure, which is one of the main
factors that affect the performance of the CSO. From the optimization goal and the natural law, HN
should be greater than RN, because hens can bring more benefits, such as eggs. Obviously, HN
should also be greater than MN, because not all hens feed chicks. The model also sets the number of
adult chickens to be greater than the number of chicks, CN (Meng, X.B. et al. 2014).
Indentity of Chicken
Assume that all the chickens are depicted by their own two properties, “fitness” and “position”. So
the model is built as follows.

,

()
, [1,], [1,]

()
i

i j

f t
i N j D

x t


∈ ∈


 (5)

Where t represents time step. N is the total number of chickens. D represents the dimension of
the space in which the chickens can search for food. f denotes the value of “fitness”, which
corresponds to the value of the objective function. x represents the “position”, which corresponds to
the decision variables in the optimization problem to be solved. In this model, the aim of
optimization is obtaining the minimum. Therefore, the smaller the value of f, the better the
chicken’s fitness (Meng, X.B. et al. 2014).
Foraging Law
According to the foraging law and identities of chickens, the authors of the literature (Meng, X.B. et
al. 2014) proposed the core part of the CSO, that is, the movement of the chickens.

Rooster Model
The rooster model is built by the truth that the roosters with better fitness values can search for food
in a wider range of place than those with worse fitness values (Meng, X.B. et al. 2014). This is
formulated below.

2,, (1) ()*(1 (0,))i ji jx t x t N σ+ = + (6)

1 ,
, [1,,],()exp(),

| |

i k

k i
i k

i

f f
k N k if f f f

f
σ

e

≤
= ∈ ≠− > +

 (7)

Where N(0, σ2) is a normal distribution with mean 0 and standard deviation σ. ε is the smallest
constant in the computer, which is used to avoid zero-division-error. k is a rooster’s index,

1900

randomly selected from the rooster groups. The kth rooster is different from the ith rooster. f is the
fitness value corresponding to x (Meng, X.B. et al. 2014).

From the established model, we can analyze the activity range of the current rooster. If fi ≤ fk,
then σ=1. Thus, the current ith rooster has better fitness, and it will have a wider range of activity
next time. If fi > fk, then 0<σ<1. Thus, the current ith rooster has worse fitness, and it will have a
narrower range of activity next time.

Hen Model
Hen groups are more complex and diverse than rooster groups and chick groups. Hens can follow
their group-mate rooster to search for food or do it by themselves. Hen would randomly steal the
good food found by others. The more dominant hens would have advantage in searching for food.
Besides, a part of hens will raise their own chicks (Meng, X.B. et al. 2014). These situations can be
represented by the following formula.

, 1, ,, 11

2, ,2 2

(1) () * (0,1)*(() ())
* (0,1)*(() ())

i j r j i ji j

r j i j

x t x t c U x t x t
c U x t x t

+ = + −
+ −

(8)

1
1

()exp()
| |

i r

i

f fc
f e
−

=
+

 (9)

2 2exp()r ic f f= − (10)

Where U1(0,1) and U2(0,1) are uniform distributions over [0, 1]. r1∈[1, N], is the index of the
head rooster in the ith hen’s group. r2∈[1, N], is the index of a chicken different from the rooster
r1, which is selected randomly from a specific group. In the specific group, every chicken’s fitness
value is better than the ith hen’s.

Thus, c2<1<c1 only if fi > fr1 and fi > fr2. If c1=0, then the ith hen wouldn’t move around her
head rooster, and it will search for food by herself. The smaller the ith hen’s fitness value, the
nearer c1 approximates to 1 and the smaller the gap of positions between the ith hen and her head
rooster. The larger the difference between fi and fr2, the larger the gap of positions between the ith
hen and the chicken r2 and the smaller c2. Therefore, the ith hen couldn’t easily steal the food found
by the chicken r2. If c2=0, then the ith hen would search for food on her own territory. In addition,
there exist competitions in the group, so the equation forms between c1 and c2 are different (Meng,
X.B. et al. 2014).

Chick Model
The chicks move around their mother to search for food (Meng, X.B. et al. 2014). Use relatively
simple way to simulate their activities below.

, , , ,(1) () *(() ())i j i j m j i jx t x t FM x t x t+ = + − (11)

Where xm,j(t) indicates the position of the ith chick’s mother (m∈[1, N]). FM is a parameter (FM
∈(0, 2)). For different chicks, the values of FM will be selected randomly. In practice, FM,
belonging to the interval [0.4, 1], generally performed well.
Relationship Update
In addition to the model described above, there are two key parameters in the CSO, that is, the total
number of iterations M and the interval of relationship update G. For M and G, they should be set to
select suitable values based on the particular problem. If G is too large, it is not conducive to
convergence to the global optimum quickly for the CSO; if G is too small, the algorithm may fall
into local optimum. Typically, G∈[2, 20] would be a good choice (Meng, X.B. et al. 2014).

1901

Tests of CSO
The CSO can directly deal with most unconstrained optimization problems similar to Benchmark
functions. Moreover, when dealing with such problems, the algorithm exhibits excellent
performance. This section selects a part of the standard test functions in the literature (Xiao, H.H. &
Duan, Y.M. 2014) to test the CSO, and then compares the results with the data in the literature
(Xiao, H.H. & Duan, Y.M. 2014). Test functions are shown in Table 1.

In order to reflect the consistency of test, we ran the program of the CSO 20 times for each test
function independently, and ensured that the parameters were same for each test function. The
parameter settings of the CSO are shown in Table 2. List the best value, the worst value, the mean
and the standard deviation of the results obtained by the CSO, and compare them with the data
listed in the literature (Xiao, H.H. & Duan, Y.M. 2014). The experimental results, which are shown
in Table 3, demonstrates that the performance of the CSO are much better than BA (Yang, X.S.
2010) and DEBA. All the original data created by the program of the CSO in the table are rounded
and the first 9 digits after the decimal point are preserved below.

Modified Chicken Swarm Optimization (m-CSO)
In the flock, the number of roosters and chicks are smaller than that of hens, and their structures are
relatively simple. The number of hens is the biggest, and the hens’ structure is the most complex in
the flock. Therefore, the hen model would directly affect the performance of the CSO. Through
many times experiments, we analyzed the whole model of the CSO, modified the latter part of the
hen model following the chick model, and kept the rest remained. The equation (8) was changed to
the form below, that equation (12).

, 1, ,, 11

, 2,2 2

(1) () * (0,1)*(() ())
* (0,1)*(() ())

i j r j i ji j

i j r j

x t x t c U x t x t
c U x t x t

+ = + −
+ −

(12)

Table 1. Test functions
ID Name Expressions and Conditions Optimum
F1 Schaffer F6 2 2 2

1 2
1 2 2 2

21

sin 0.5() 0.5, 100 100, 2
[1 0.001()]

i
x xf x x n

x x
+ −

= − − ≤ ≤ =
+ +

-1

F2 Griewank 2
2

1 1

1() 1 cos(), 600 600, 10
4000

nn
i

i i
i i

xf x x x n
i= =

= + − − ≤ ≤ =∑ ∏
0

F3 Rosenbrock 1
2 22

13
1

() [100() (1)], 30 30, 10
n

i i i i
i

f x x x x x n
−

+

=

= − + − − ≤ ≤ =∑
0

Table 2. Parameter settings

__
M N G rp hp mp FM

__
1000 100 10 0.2 0.6 0.1 [0.5, 0.9]
__

Table 3. Statistical comparison of CSO with BA and DEBA on F1-F3

Function Algorithm Best Worst Mean Std.
F1 BA -0.921810818 -0.511191588 -0.640175003 1.240439745e-01

DEBA -1 -0.999438907 -0.999925903 1.321207680e-04
CSO -1 -1 -1 0

F2 BA 48.356822946 4.884648927e+02 1.934004011e+02 1.142338058e+02
DEBA 3.773594144e-07 3.907074747e-05 1.314841126e-05 1.105930329e-05
CSO 0 0 0 0

F3 BA 4.138213137e+03 5.382751350e+07 1.013266796e+07 1.372576961e+07
DEBA 22.860694188 88.599479455 55.249891509 17.805778520
CSO 6.339087813 7.226184561 6.942939149 0.322589855

1902

Table 4. Optimization results of m-CSO on the function F3
Function Algorithm Best Worst Mean Std. M
F3 m-CSO 1.677240079 2.802966172 2.240676430 0.332482466 1000

0.081880091 0.180520462 0.127903339 0.030576332 2000
0.005862121 0.027200427 0.015156016 0.004572982 3000
0.001201132 0.004775559 0.002830799 8.357847107e-04 4000

The modified CSO algorithm, hereinafter referred to as the m-CSO algorithm, was tested

independently on the third test functions F3 with the same parameters and the same running times.
The results given by the program of the m-CSO are shown in Table 4 below. The parameter settings
are same as above shown in Table 2. Obviously, with the same parameters, the m-CSO is superior
to the CSO considering optimization accuracy and stability. Based on this, if only increasing the
number of iterations, higher accuracy and stability can be achieved.

Applying Penalty Function to m-CSO for Constrained Optimization
In this paper, a penalty function was combined with the m-CSO, hereinafter referred to the pm-CSO
algorithm, to solve the nonlinear constrained optimization problem containing the inequality
constraints and the equality constraints.
Constrained Optimization Problem
The general form of constrained optimization problem is depicted as follows.

{
min ()

() 0, 1,...,. . ,() 0, 1,...,
ni

i

f x
g x i ks t x Rh x i k m

≤ = ∈
= = +

 (13)

Where, x=(x1, x2, …, xn) represents the decision variables. gi(x) and hi(x), respectively,
represent the inequality constraints and the equality constraints. Generally, the equality constraints
hi(x)=0 can be transformed to the inequality constraints –σ≤ hi(x)≤σ. σ is the tolerance limit of the
equality constraints (Mi, Y.Q. & Gao, Y.L. 2015). In the constrained optimization problem,
max[f(x)]↔min[–f(x)], and gi(x)≥0↔(–gi(x)≤0), so the formula (13) can represent all the
constrained optimization problems.
Penalty Function
In the course of solving constrained optimization problems, how to deal with the constraints is the
key. The quality of processing the constraints is directly related to the quality of the final result. In
this paper, a classical method to deal with the constraints was adopted, that is, the penalty function
method. Although there were many different forms of penalty functions, the core of the penalty
function method for constrained optimization problems had never been changed. That is, by
weighting on the inequality constraints and the equality constraints, then combining them with the
original objective function, a new objective function is created to replace the original one. Using
such a simple method, the original constrained optimization problems are transformed to the
unconstrained ones (Mi, Y.Q. & Gao, Y.L. 2015).

In this paper, a dynamic penalty function method was selected to handle constrained
optimization problems (Yang, J.M. et al. 1997) as follows.

(,) () ()* ()F x t f x d t p x= + (14)

*
5*

()
0.0025*
...

t t
t

d t t
t



= 




 (15)

1903

1
() * () i

n

i i
i

p x cond x βα
=

=∑ (16)

{max(0, ()), 1,...,() max(0,| () |), 1,...,
i

i
i

g x i kcond x h x i k m
==
= +

 (17)

{1, () 1
2, () 1

i
i

i

cond x
cond xα <=

≥
 (18)

10, () 0.01
20, 0.01 () 0.1
100, 0.1 () 1
300, () 1

i

i
i

i

i

cond x
cond x

cond x
cond x

β

<
 ≤ ≤=  < ≤

>

 (19)

Where F(x, t) is the new objective function, a function of the decision variables x and the time
step t. f(x) is the original objective function. d(t) is the penalty factor. p(x) is a penalty term. condi(x)
is the degree function to violate the ith constraint. αi and βi are different levels of punishment
function and punishment intensity. About d(t), the selection depends on the specific circumstance.

Thus, the original constrained optimization problems can be transformed to equivalent
unconstrained ones, that is, min[f(x)]↔min[F(x, t)]. The following is to validate the performance of
the pm-CSO using two practical engineering problems.
Experiments and Analyses
Experiment 1: QQR-T1-4 Problem
The mathematical model of QQR-T1-4 problem (Hock, W. & Schittkowski, K. 1981) is expressed
as follows.

22 ,2 21 1min () (2) (1) , ()f x x x x x x= − + − = (20a)
21 221

1 2

1 22

() 1 0
. . ,0 , 104

() 2 1 0

xg x x
s t x x

h x x x

 = + − ≤ ≤ ≤
 = − + =

 (20b)

Table 5. Optimization results of QQR-T1-4 by pm-CSO
Number f x1 x2 g1 h2
1 1.393464981 0.822875656 0.911437828 -1.33095757e-11 -2.39808e-14
2 1.393464989 0.822875652 0.911437826 -4.731791958e-09 -3.89470678e-11
3 1.393466416 0.822875074 0.911437452 -9.235509753e-07 1.694994745e-07
4 1.393464994 0.822875650 0.911437825 -7.219941978e-09 2.87960766e-11
5 1.393466749 0.822874932 0.911437466 -9.573716975e-07 -9.1955332e-12
6 1.393564702 0.822834897 0.911416575 -5.550970447e-05 1.747053610e-06
7 1.393465451 0.822875463 0.911437733 -2.518178630e-07 -3.219815081e-09
8 1.393477181 0.822870688 0.911434971 -7.250921217e-06 7.458435856e-07
9 1.393464988 0.822875652 0.911437826 -4.120968455e-09 1.50921498e-11
10 1.393501268 0.822860841 0.911429871 -2.059876895e-05 1.097870112e-06

This is a typical nonlinear optimization problem containing equality constraints and inequality

constraints. Until now, there have been many scholars who had studied it. Literatures (Homaifar, A.
et al. 1994, Fogel, D.B. 1995, Myung, H. et al. 1995, Yang, J.M. et al. 1997) showed us this issue.
Literature (Yang, J.M. et al. 1997) listed the result of this issue, that is, f =1.3934651, which
corresponds to the value of the decision variables (x1, x2) = (0.8228756, 0.9114378). It is the best
currently known result.

Using the pm-CSO to solve this problem, and running the program 10 times independently, we
got the results shown in Table 5. The parameters were same as ones in Table 2 except M. M is 2000
for this issue. And, the penalty factor d(t) is “0.0025*t”. As can be seen from the table, all the
function values belong to the range [1.393464980713918, 1.393564702486817]; all the decision

1904

variables and inequality constraints are to meet the requirements; only equality constraints fluctuate
around 0. In all results, we found that the 1st, 2nd, 4th, 9th result are relatively closer to the known
optimum, and the precision of the first result is the highest. If the accuracy of equality constraints
can be appropriately set to a little wider, we can say that the first result is better than the best
currently known results.

Experiment 2: Speed Reducer Design
The mathematical model of speed reducer design problem (Reynolds, R. & Ali, M. 2008) is
expressed as follows.

2 22 3 31

2 21 6 7

3 3 2 26 7 4 6 5 7

, , , , , ,2 3 4 5 6 71

min () 0.7854 (3.3333 14.9334
43.0934) 1.508 ()

7.4777() 0.7854(),
()

f x x x x x
x x x

x x x x x x
x x x x x x x x

= +
− − + +

+ + +
=

(21a)

21 22 21 2 3 1 2 3
3 34 5

43 4 42 6 3 2 7 3

4 2 6
5 36 2 3

5 2 6
6 3 2 37

2 3 2 1
7 8 9

1 2

10

27 397.5() , () ,

1.93 1.93() , () ,

1 745() () 16.9*10 ,
110. .1

1 745() () 157.5*10 ,
85

5() , () , () ,
40 12
1.()

g x g x
x x x x x x

x xg x g x
x x x x x x

xg x
x x xs t

xg x
x x x

x x x xg x g x g x
x x

g x

= =

= =

= +

= +

= = =

= 6 7
11

4 5

5 1.9 1.1 1.9, ()x xg x
x x















 + + =


(21b)

2 31

4 5 6

7

, , , , , 112 101 3

2.6 3.6, 0.7 0.8,17 28,
7.3 8.3, 7.8 8.3, 2.9 3.9,

. .2 5 5.5,
() 1(1,2,...,11),

(...)
i

x x x
x x x

s t x
g x i
g g g g g g

≤ ≤ ≤ ≤ ≤ ≤
 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
 ≤ =

=

(21c)

Use the pm-CSO to optimize this problem, run the program independently 20 times, and
compare the result of the pm-CSO with ones of other optimization algorithms. The results are
shown in Table 6. The parameter settings are same as above shown in Table 2. For this issue, the
penalty factor d(t) was “t*t0.5”.

Table 6. Optimization results of the speed reducer design
Algorithm Best Worst Mean Std.
Robert, et al (Reynolds,
R. & Ali, M. 2008)

SFI(lBest) 3000.737 3044.332 3015.026 9.95
SFI(square) 2996.974 3007.301 3000.278 2.804
SFI(gBest) 2998.991 3034.973 3011.062 9.105

Mezura, et al (Mezura, M.E. &
Hernandez, O.B. 2009)

2999.264 N/A 3014.759 11.0

Akay, et al (Akay, B. & Karaboga, D.
2012)

2997.05841 N/A 2997.05841 0

Gandomi, et al (Gandomi, A.H., Yang,
X.S. & Alavi, A.H. 2013)

3000.981 3009 3007.2 4.963

CSO (Meng, X.B. et al. 2014) 2996.605 3007.258 2997.764 0.165
pm-CSO 2996.348164995 2996.348505298 2996.348205146 8.912827902e-

05

1905

According to the table above, the optimal value obtained by the pm-CSO is 2996.348164995.

The decision variables corresponding to the optimal value are
x = (3.500000000004351, 0.700000000000000, 17.000000000005702, 7.300000000000000,

7.800000000107652, 3.350214666099439, 5.286683229790418).
The corresponding constraints are

g = (0.926084719600665, 0.802001472856516, 0.500827751895624, 0.098528302386299,
0.999999999997317, 0.999999999981577, 0.297500000000100, 0.999999999998757,
0.416666666667185, 0.948674246458789, 0.989147634956792).

From the results, the pm-CSO is better than another seven kinds of optimization algorithms,
including the CSO. Compared with the original CSO, the pm-CSO has greatly improved the
performance, whether the optimization accuracy or stability.

Conclusions and Discussions
As a new bio-inspired algorithm, the CSO inherits many advantages of other algorithms. In dealing
with most unconstrained optimization problems, the CSO demonstrated its excellent performance. It
can be far better than many of the current optimization algorithms in terms of the optimization
precision and stability. However, the basic CSO could not perform satisfactorily while dealing with
some specific unconstrained optimization problems and constrained ones. By modifying the original
hen model of the CSO, we got the m-CSO, which performed better in the specific problems the
CSO couldn’t deal with well. The test results in section 3 illustrated this point well.

In addition, we selected a dynamic penalty function to combine with the m-CSO for complex
constrained optimization problems. Like this, we got the pm-CSO. With penalty function, the
constrained optimization problems could be transformed to unconstrained ones. Then the pm-CSO
can quickly optimize these unconstrained optimization problems. In this paper, the modification of
the CSO and the combination with the penalty function make the CSO obtain more advantages in
dealing with the optimization problem. The pm-CSO will be largely beneficial to solving
engineering optimization problems such as the lightweight design of airborne electro-optical
platform.

Of course, there are still many aspects about the CSO we can study. The initial parameters
directly decide the flock structure and the update interval of flock relationship. And their changes
will affect the overall performance of the CSO. Moreover, the dynamic penalty function selected in
this paper could not deal with all the constrained optimization problems. For different constrained
optimization problems, the pm-CSO needs different penalty factors and initial values of the
objective function to prevent the algorithm to diverge in the iterative process.

References
[1] Akay, B. & Karaboga, D. 2012. Artificial bee colony algorithm for large-scale problems and
engineering design optimization. Journal of Intelligent Manufacturing. 23(4): 1001–1014.
[2] Fogel, D.B. 1995. A comparison of Evolutionary Programming and Genetic Algorithm on
selected Constrained Optimization Problems. Simulation. 64(6): 397-404.
[3] Gandomi, A.H., Yang, X.S. & Alavi, A.H. 2013. Cuckoo search algorithm: A metaheuristic
approach to solve structural optimization problems. Engineering with Computers. 29(1): 17–35.
[4] Hock, W. & Schittkowski, K. 1981. Test Examples for Nonlinear Programming Codes. 187.
[5] Homaifar, A., Qi, C.X. & Lai, S.H. 1994. Constrained Optimization via Genetic Algorithms.
Simulation. 2(4): 242-254.
[6] Meng, X.B., Liu, Y. & Gao, X.Z. et al. 2014. A new bio-inspired algorithm: chicken swarm
optimization. International Conference on Swarm Intelligence. 8794: 86-94.

1906

[7] Mezura, M.E. & Hernandez, O.B. 2009. Modified bacterial foraging optimization for
engineering design. Artificial Neural Networks in Engineering Conference. 19: 357–364.
[8] Mi, Y.Q. & Gao, Y.L. 2015. The improved particle swarm optimization algorithm for solving
constrained optimization Problems. Journal of Jiangxi Normal University(Natural Science). 39(1):
59-63.
[9] Myung, H., Kim, J.H. & Fogel, D.B. 1995. Preliminary Investigations into a Two-Stage Method
of Evolutionary Optimization on Constrained Problems: 449-463.
[10] Reynolds, R. & Ali, M. 2008. Embedding a social fabric component into cultural algorithms
toolkit for an enhanced knowledge-driven engineering optimization. International Journal of
Intelligent Computing and Cybernetics. 1(4): 563–597.
[11] Wang, P., Zhang, G.Y. & Liu, J.Y., et al. 2014. Topology Optimization Design for Inner Frame
of Airborne Electro-optical Platform. Journal of Mechanical Engineering. 50(13): 135-141.
[12] Xiao, H.H. & Duan, Y.M. 2014. Research and application of improved bat algorithm based on
DE algorithm. Computer Simulation. 31(1): 272-277.
[13] Yang, J.M., Chen, Y.P. & Horng, J.T., et al. 1997. Applying Family Competition to Evolution
Strategies for Constrained Optimization. Evolutionary Programming. 1213: 201-211.
[14] Yang, X.S. 2010. A new metaheuristic bat-inspired algorithm. GONZALEZ J R et al. Nature
Inspired Cooperative Strategies for Optimization (NICSO 2010): 65-74.

1907

	Introduction
	Mathematical Model
	Flock Structure
	Indentity of Chicken
	Foraging Law
	Relationship Update

	Tests of CSO
	Modified Chicken Swarm Optimization (m-CSO)
	Applying Penalty Function to m-CSO for Constrained Optimization
	Constrained Optimization Problem
	Penalty Function
	Experiments and Analyses

	Conclusions and Discussions
	References

