Automated Classification of Brain MR Images Using Wavelet-Energy and Support Vector Machines

Guang-Shuai ZHANG, Qiong WANG, Chunmei FENG
School of Computer Science and Technology
Nanjing Normal University
Nanjing, Jiangsu 210023, China

Elizabeth LEE
Department of Engineering Technology
Chattanooga State Community College
Chattanooga, TN 37406, USA

Genlin JI, Shuihua WANG, Yudong ZHANG*
Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing
Nanjing, Jiangsu 210042, China

Jie Yan
Department of Applied Physics
Stanford University
Stanford, CA 94305, USA

Abstract—It is of great importance to early detect abnormal brains, in order to save social resources. However, potential of wavelet decomposition is not fully explored and widely used. The wavelet-energy was a successful feature descriptor that achieved excellent performance in various applications; hence, we propose a wavelet-energy based new approach for automated classification of MR human brain images. The approach consisted of a three-stage system, including wavelet decomposition, energy extraction, and support vector machines. The results of proposed approach showed its performance was comparable with state-of-the-art algorithms. In addition, it provided a new means to detect features indicative of abnormal brains.

Keywords—MR images; MRI; classification.

I. INTRODUCTION

The problem of automatic classification of normal/pathological subjects based on brain MRI is of great importance in clinical medicine [1]. MRI is concerned with soft tissue anatomy and generates a large information set and details about the subject’s brain condition [2]. There exists a large body of work on using brain MRI for automatic diagnosis [3, 4]. A promising approach for analyzing the obtained images is the wavelet transform which offers the capability of simultaneous feature localization in the time and frequency domains [5, 6].

By applying a wavelet transform to an image, four subbands are usually defined. They are the low-high, high-low, and high-high subbands which provide high-frequency coefficients for finer-scale image details representation, and the low-low subband whose low-frequency coefficients allow image approximation [7]. Wavelet transform have been applied in many areas of computer vision, of which image texture classification, and they have become popular for biomedical signal processing applications.

Scholars tend to use wavelets energy as inputs to a support vector machine to determine whether a MRI of the human brain is normal or abnormal [8-11]. The pathological images were those of brains suffering from Glioma, Huntington, Meningioma and Alzheimer’s disease. The discrete wavelet transform was used to extract features from images and principal component analysis was employed reduce the number of features. SVM have attracted attention from the pattern recognition community. The proposed method, tested over MRI images, is developed with the aim of providing a computer-aided diagnosis tool that detects and selects the pathological brain images, and makes use of supervised learning techniques to classify new subjects, thus improving the accuracy of diagnosing pathological images in its early stage.

II. METHODOLOGY

A. 2D-DWT

The two-dimensional discrete wavelet transform (2D-DWT) decomposes an image into several sub-bands according to a recursive process [12, 13]. The l-level decomposition obtains two kinds of coefficients. One contains LH1, HL1, and HH1, which represent details of the original images [14, 15]. The other is LL1 that corresponds to the approximation of original image [16]. The approximation LL1 is then decomposed into second-level approximation and detail images, and the process is repeated to achieve the desired level of resolution [17]. The obtained coefficients for the approximation and detail sub-band images are useful features for texture categorization. The 2D-DWT decomposes an image into spatial frequency components.
that describe the image texture. In practical, the coefficients are obtained by convolving the image with a bank of filters. Afterwards, selected features are extracted from the coefficients for further processing. Mathematically, the 2D-DWT of function $f(x)$ is defined by:

$$f(x) = \sum_{i,j} c_{i,j} \psi_{i,j}(x)$$

$$c_{i,j} = \int_{-\infty}^{\infty} f(x) \psi_{i,j}(x) dx$$

where $\psi_{i,j}(x)$ stands for the wavelet functions and $c_{i,j}$ are the DWT coefficients of $f(x)$.

B. Wavelet-Energy

In the first phase of the proposed work, two-dimensional discrete wavelet transformation is performed on the image. In our experiments, we fixed two decompositions level. After wavelet transformation is applied on the image, wavelet coefficients from the detail subbands of all the decomposition levels are used to formulate the local wavelet energy feature [5].

The wavelet energy in horizontal, vertical and diagonal directions at the i-level can be, respectively, defined as:

$$E^h_i = \sum_{x=1}^{M} \sum_{y=1}^{N} (H_i(x,y))^2$$

$$E^v_i = \sum_{x=1}^{M} \sum_{y=1}^{N} (V_i(x,y))^2$$

$$E^d_i = \sum_{x=1}^{M} \sum_{y=1}^{N} (D_i(x,y))^2$$

These energies reflect the strength of the images’ details in different direction at the i-level decomposition. So the feature vector, $(E^h_i, E^v_i, E^d_i)_{i=1,2,3}$, where k is the total wavelet decomposition level, can describe the details features of facial expression effectively.

C. SVM

The introduction of support vector machine (SVM) is a landmark of the field of machine learning. The advantages of SVMs include high accuracy, elegant mathematical tractability, and direct geometric interpretation [18]. Recently, multiple improved SVMs have grown rapidly, among which the kernel SVMs are the most popular and effective. Kernel SVMs have the following advantages [19]: (1) they work very well in practice and have been remarkably successful in such diverse fields as natural language categorization, bioinformatics and computer vision; (2) they have few tunable parameters; and (3) their training often involves convex quadratic optimization [20]. Hence, solutions are global and usually unique, thus avoiding the convergence to local minima exhibited by other statistical learning systems, such as neural networks.

Suppose some prescribed data points each belong to one of two classes, and the goal is to classify which class a new data point will be located in. Here a data point is viewed as a p-dimensional vector, and our task is to create a (p-1)-dimensional hyperplane. There are many possible hyperplanes that might classify the data successfully. One reasonable choice as the best hyperplane is the one that represents the largest separation, or margin, between the two classes, since we could expect better behavior in response to unseen data during training, i.e. better generalization performance. Therefore, we choose the hyperplane so that the distance from it to the nearest data point on each side is maximized. Figure 1 shows the geometric interpolation of linear SVMs, here H_1, H_2, H_3 are three hyperplanes which can classify the two classes successfully, however, H_2 and H_3 does not have the largest margin, so they will not perform well to new test data. The H_1 has the maximum margin to the support vectors ($S_{11}, S_{12}, S_{13}, S_{21}, S_{22}, S_{23}$), so it is chosen as the best classification hyperplane.

![Figure 1. The geometric interpolation of linear SVMs (H denotes for the hyperplane, S denotes for the support vector)](image)

Given a p-dimensional N-size training dataset of the form

$$\left\{(x_n, y_n) \in \mathbb{R}^p, y_n \in \{-1,1\}, n = 1, \ldots, N \right\}$$

where y_n is either -1 or 1 corresponds to the class 1 or 2. Each x_n is a p-dimensional vector. The maximum-margin hyperplane which divides class 1 from class 2 is the support vector machine we want. Considering that any hyperplane can be written in the form of

$$wx - b = 0$$

We want to choose the W and b to maximize the margin between the two parallel hyperplanes as large as possible while still separating the data. So we define the two parallel hyperplanes by the equations as

$$wx - b = \pm 1$$

Therefore, the task can be transformed to an optimization problem. That is, we want to maximize the distance between the two parallel hyperplanes, subject to prevent data falling into the margin. Using simple mathematical knowledge, the problem can be finalized as...
The reason leans upon the fact that \(||w|| \) is involved to a square root calculation. After it is superseded with formula (10), the solution will not change, but the problem is altered into a quadratic programming optimization that is easy to solve by using Lagrange multipliers and standard quadratic programming techniques and programs.

D. Implementation

The proposed method is a combination of three successful components: WT, Energy Extraction, and SVM. The images belong to the whole brain atlas, where the brain image datasets are acquired using several imaging technologies.

Its flowchart is listed in follows. The proposed methodology of classifying MR images of human brain is shown in Figure 2. The method uses the steps of wavelet-transform, feature extraction, feature selection and classification.

![Flow diagram of the approach](image)

III. EXPERIMENTS

E. Data Acquisition

We have tested our classification algorithm for several MR images, some of which belong to normal brain and others belong to pathological brain “Figure 3”. All these normal and pathological images are axial, T2-weighted, MR images of 256x256 sizes. For each image available, the location of the image in the whole brain dataset is shown in the side view. For our case study, we have considered a total of 66 images (18 belonging to normal brains and 48 belonging to pathological brains, suffering from a low-grade glioma, meningioma, bronchogenic carcinoma, Glioblastoma, Sarcoma and Grade IV tumors) in several brain locations.

F. Classification Comparison

![Sample MR images](image)

We compared the proposed wavelet-entropy with other reported features: including DWT+PCA+SVM [21], BPNN [22], RBFNN [22], and PSO-KSVM [22]. The evaluation measures are chosen as accuracy, sensitivity, and specificity shown in Table .

Table I Classification Comparison

<table>
<thead>
<tr>
<th>Measure</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>(\frac{(TP + TN)}{(TP + TN + FP + FN)})</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>(\frac{TP}{(TP + FN)})</td>
</tr>
<tr>
<td>Specificity</td>
<td>(\frac{TN}{(TN + FP)})</td>
</tr>
</tbody>
</table>

Table II Classification Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWT+PCA+SVM [21]</td>
<td>95%</td>
<td>96.42%</td>
<td>85%</td>
</tr>
<tr>
<td>BPNN [22]</td>
<td>86.22%</td>
<td>88.00%</td>
<td>56.00%</td>
</tr>
<tr>
<td>RBFNN [22]</td>
<td>91.33%</td>
<td>92.47%</td>
<td>72%</td>
</tr>
<tr>
<td>Wavelet-Energy+SVM (Proposed)</td>
<td>82.69%</td>
<td>78.05%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Results in Table report that the accuracy, sensitivity, and specificity of the proposed wavelet-energy are 82.69%, 78.05%, and 100.00%, respectively. Although the accuracy and sensitivity of the proposed method are slightly lower than latest methods [21, 22], the specificity of the proposed method is perfect as high as 100%, which
is a substantial improvement to other methods. This suggested the wavelet-energy is extremely efficient in increasing the specificity of classification.

The disadvantage of the proposed method lies in its inefficiency of accuracy and sensitivity. The reason may attribute to following points: (i) decomposition level is too small to capture the discriminant feature; (ii) energy is not a good descriptor of brain MR image. However, considering its excellent performance of specificity, our method is competitive with latest methods.

IV. CONCLUSIONS AND FUTURE RESEARCH

The contributions of this paper lie in following aspects: (i) A new approach for automatic classification of MR Images as normal or abnormal using WT, Wavelet-Energy and SVM classifier is proposed. (ii) Our experiments demonstrate the proposed classifier reaches a specificity of 100%. (iii) Wavelet-Energy is an important and effective feature for MR brain image classification.

In this study, a new approach for automatic classification of MR Images as normal or abnormal using Wavelet-Energy and SVM is proposed. The results show that the proposed method gives comparable results with latest methods presented in the literature, but the proposed approach gives a specificity of 100%. It suggests that our three-step algorithm is a promising for image classification in a medical imaging application. This automated analysis system, which requires much lighter computational time, could be further used for classification of image with different pathological condition, types and disease status.

In the future, we may focus on following regards: (i) we try to increase the decomposition level of 2D-DWT, in order to test whether higher level can lead to better classification performance. (ii) we may replace wavelet-energy with more efficient descriptors. (iii) Some advanced pattern recognition techniques may be used, such as RBF-NN [23] and deep learning [24].

ACKNOWLEDGMENT

This work was supported by NSFC (No. 610111024), Program of Natural Science Research of Jiangsu Higher Education Institutions of China (No. 14KJB520021), Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing (BM2013006), and Nanjing Normal University Research Foundation for Talented Scholars (No. 2013119XQ0061).

CONFLICT OF INTEREST

We have no conflicts of interest to disclose with regard to the subject matter of this paper.

REFERENCES

