Hg Geochemical Character on Soil of Xianling of Ming Dynasty

Guo Li
China University of Geosciences
Beijing Geological Survey
Beijing, China
e-mail: guoli_mail@163.com

Che Chuxin
Beijing Geological Survey
Beijing, China
e-mail: chenchuxin@163.com

Ding Changshun
Beijing Geological Survey
Beijing, China
e-mail: dingchangshun@163.com

Lü Jinbo
Beijing Geological Survey
Beijing, China
e-mail: lujinbo@163.com

Abstract—we investigated characteristics of soil Hg, soil gas Hg and atmospheric Hg on tomb of Ming Xianling. Xianling is the tomb of the fourth emperor Zhu Gaochi of the Ming Dynasty. Soil samples were collected for determination of mercury. Soil gas Hg and atmospheric Hg is analysed on high mercury anomalous areas. The results showed that soil Hg on Treasure Town is close to natural background and on Five Offerings is enriched or anomalous. The content of soil Hg is enriched in the surface soil layer. Soil gas Hg is high on Hg enrichments. Atmospheric Hg is low on the survey areas. Meteorological conditions influence mercury flux of emission from Soil to atmosphere. Soil gas Hg is directly affected by the soil Hg. In history, the use of mercury in the mausoleum is a very common phenomenon. Study on the geochemical characteristics of mercury provides the scientific basis for environmental protection and historical research.

Keywords—Ming Xianling; soil Hg; soil gas Hg; atmospheric Hg; tomb

I. INTRODUCTION

According to the archaeological and historical record, the use of mercury in the mausoleum is a very common phenomenon. Mercury and mercury minerals as anticorrosion material, pigment, drug or the status symbol in and around the tomb becomes a different source of mercury from geological bodies[1]. Mercury and cinnabar[2] buried in the soil for a long time. Due to volatile features of mercury[3], gas mercury constantly emitted from soil. Gas mercury was adsorbed by soil in the way up and became anomalous. Using mercury measurement to study the content of soil Hg, soil gas Hg[4] and atmospheric Hg[5], the geochemical characteristics of mercury provides the scientific basis for environmental protection[6] and historical research[7].

Lying in Changping District of Beijing, the Ming Tombs are a group of mausoleums for 13 emperors in the Ming Dynasty. It is the extant imperial mausoleum building complex in China that has the largest number of the imperial mausoleums for emperors and empresses.

Xianling is the tomb of Emperor Zhu Gaochi, the fourth ruler of the Ming [8], and his wife Empress Zhang. Emperor Zhu Gaochi was comparatively thrifty in his expenditures, which could be reflected from his small-sized Xianling Tomb. The tomb covers an area of 42,000 square meters. The main structures, in turn, are Tomb Gate, Gate of Eminent Favor, Hall of Eminent Favor, Gate on the Threshold of Stars, Five Stone Sacrificial Utensils, Soul Tower, and Treasure Town. The Underground Palace is under the Treasure Town.

Soil samples were collected for determination of mercury on Treasure Town, Five Offerings areas and around tomb.

Soil Hg is analysed by Atomic Fluorescence Spectrometry. A variety of methods of mercury vapor survey[9] were carried out for mercury in air and mercury in soil gas on high mercury anomalous area. Soil gas Hg and atmospheric Hg is analysed by the atmosphere of ultra trace mercury analyzer.
II. DISCUSSED PROBLEMS

A. Characteristics of soil Hg

Soil samples were collected on Treasure Town. From No.19,20 to 21, Figure 1, which are located in the East, North, and West of Precious Top in turn. The content of soil Hg is 0.347 µg/g, 0.153 µg/g, and 0.151 µg/g. They are higher than the soil Hg background value 0.065 µg/g of China. The Soil pH value is less than 6.5.

According to environmental quality standard for soil, soil Hg of No.20 and 21 is closer to the natural background value of soil 0.15 µg/g [10]. Soil Hg of No.19 comes up to the second standard. Soil Hg is enriched or anomalous in the surface soil on Treasure Town.

Comparison of 0-10cm and 10-20cm in soil samples found that Hg is enriched in the surface soil. The content is shown in Table 1. The content of soil Hg is 0.347 µg/g in the 0-10cm and 0.231 µg/g in the 10-20cm for No.19. The content of soil Hg in the 10-20cm is higher than the soil Hg background value of China. The Soil pH reduces from 6.46 to 5.78.

The content of soil Hg in the 0-10cm and 0.077 µg/g in the 10-20cm for No.20. Soil Hg is close to background value of China. The Soil pH reduces from 5.44 to 5.36. Results indicate that the content of soil Hg is enriched in the surface soil layer.

High mercury anomalous area was detected on Five Offerings. The results are shown in Table 1. The content of soil Hg is 1.845 µg/g for No.22. Soil pH is 7.22. Soil samples were collected in the 0-10cm layer and soil composed of gravel. The content of soil Hg is 3.062 µg/g for No.23. Soil pH is 8.10. Soil samples were collected in the 0-20cm layer. The composition of soil includes lime, sand, and brick. According to environmental quality standard for soil, soil Hg of No.22 and 23 comes up to the third standard.

The composition and properties of soil on Treasure Town are different from Five Offerings areas. Soil pH and soil Hg are higher on Five Offerings areas.

B. Features of soil gas Hg and atmospheric Hg

We measured soil gas Hg and atmospheric Hg on high mercury anomalous area of Five Offerings. The results are shown in Table 3 and Table 4.

The monitoring parameters of No.22 are time from 15:40 to 16:40, average temperature 31.1°C, average soil temperature 36.9°C. Soil gas Hg decreased from 57.383 ng/m³ to 43.590 ng/m³. Hg concentration in atmosphere declined from 9.453 ng/m³ to 4.538 ng/m³. Then the data did not obviously change any more.
The monitoring parameters of No.23 are time from 17:00 to 18:00, average temperature 29.1°C, soil temperature from 28.3°C to 24.6°C. Soil gas Hg decreased from 6.430 ng/m³ to 5.632 ng/m³. Atmospheric Hg decreased from 4.352 ng/m³ to 3.362 ng/m³. Then the data held the line.

Soil gas Hg is large different on the monitoring points of high mercury anomalous area. The content changed from 57.383 ng/m³ to 5.632 ng/m³. Atmospheric mercury distributes evenly in the air. The highest content of soil gas Hg is 10 times of atmospheric Hg. The data of soil gas Hg is far lower than the average content of Beijing urban[11]. Hg concentration in atmosphere is same as the average content 3.13ng/m³ of Beijing urban[11].

A good linear relationship for soil gas Hg versus atmospheric Hg was confirmed, which indicated that the sources of soil gas Hg may be the more significant contributors of mercury to the atmosphere than previously realized[11]. Although meteorological conditions[12] influence mercury flux of emission from Soil to atmosphere, Soil gas Hg is directly affected by the soil Hg.

At the same monitoring spot, air temperature is maintained constant. During the monitoring period, temperature changed from 31.1°C to 29.1°C and soil temperature sharp declined from 37.7°C to 24.6°C. The total radiation intensity reduced from 467.1W/m² at 15:40 to 8.8W/m² at 18:00. In the monitoring period, soil moisture, relative humidity and windspeed kept stable. The result is showed in Table 5. Soil temperature is one of the important factors affecting the result of soil gas mercury survey.

TABLE III. CONTENT OF SOIL GAS Hg IN DIFFERENT MONITORING PARAMETERS

<table>
<thead>
<tr>
<th>No.</th>
<th>Atmospheric Hg (ng/m³)</th>
<th>Time</th>
<th>Soil temp.(°C)</th>
<th>Temp.(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>9.453</td>
<td>15:40:00</td>
<td>33.2</td>
<td>31.3</td>
</tr>
<tr>
<td></td>
<td>7.507</td>
<td>16:00:00</td>
<td>37.4</td>
<td>31.3</td>
</tr>
<tr>
<td></td>
<td>6.510</td>
<td>16:20:00</td>
<td>37.7</td>
<td>30.8</td>
</tr>
<tr>
<td></td>
<td>4.538</td>
<td>16:40:00</td>
<td>37.6</td>
<td>30.9</td>
</tr>
<tr>
<td>23</td>
<td>4.352</td>
<td>17:00:00</td>
<td>28.3</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td>3.681</td>
<td>17:20:00</td>
<td>25.9</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>3.372</td>
<td>17:40:00</td>
<td>24.9</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>3.362</td>
<td>18:00:00</td>
<td>24.6</td>
<td>27.9</td>
</tr>
</tbody>
</table>

TABLE IV. CONTENT OF ATMOSPHERIC Hg IN DIFFERENT MONITORING PARAMETERS

<table>
<thead>
<tr>
<th>No.</th>
<th>Soil Gas Hg ng/m³</th>
<th>Time</th>
<th>Soil temp.(°C)</th>
<th>Temp.(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>57.383</td>
<td>15:50:00</td>
<td>37.4</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>48.727</td>
<td>16:10:00</td>
<td>37.3</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>43.590</td>
<td>16:30:00</td>
<td>37.8</td>
<td>31.0</td>
</tr>
<tr>
<td>23</td>
<td>6.430</td>
<td>17:10:00</td>
<td>26.8</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>6.103</td>
<td>17:30:00</td>
<td>25.3</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>5.632</td>
<td>17:50:00</td>
<td>24.7</td>
<td>28.1</td>
</tr>
</tbody>
</table>

III. CONCLUSIONS

Mercury enrichments or anomalies in soils are a general phenomenon in Chinese, and investigation on source, transport cycle and fate of Hg in soil is essential for evaluating environmental. The mercurometric survey was employed to detect or judge the mercury character of tomb. Mercury vapor measurement has yielded preliminary results in the detection of mercury source.

There are mercury enrichments or anomalies in soils of Xianling tomb. The average content of soil Hg is closed to the natural background on Treasure Town. Soil Hg on Five Offerings is anomalous. The content of soil Hg comes up to the third standard.

Soil gas Hg is high on areas of anomalous soil Hg and is far lower than the average content of Beijing urban. The sources of soil Hg may be the more significant contributors of mercury to the soil gas. Hg concentration in atmosphere is same as the average content of Beijing urban. Meteorological conditions influence mercury flux of emission from Soil to atmosphere. Soil temperature is one of the important factors affecting the result of soil gas mercury survey.

ACKNOWLEDGMENT

This study was supported by Beijing Ming Tombs Office of the Special Administrative Region.

REFERENCES

