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Abstract

In the text literature, many topic models were proposed to represent documents and words as topics or
latent topics in order to process text effectively and accurately. In this paper, we propose LDACLM or
Latent Dirichlet Allocation Category Language Model for text categorization and estimate parameters of
models by variational inference. As a variant of Latent Dirichlet Allocation Model, LDACLM regards
documents of category as Language Model and uses variational parameters to estimate maximum a pos-
teriori of terms. In general, experiments show LDACLM model is effective and outperform Naı̈ve Bayes
with Laplace smoothing and Rocchio algorithm but little inferior to SVM for text categorization.

Keywords: Topic model, Latent Dirichlet allocation, Variational Inference, Category Language Model.

1. Introduction

In the text analysis, standard algorithms are unsat-
isfactory because terms often were supposed inde-
pendent, which was recognized as “bag of words”
model. However, the “bag of words” model offers
a rather impoverished representation of the data be-
cause it ignores any relationships between the terms.

In the recent past, a new class of generative mod-
els called Topic Model have quickly become more
popular in some text-related tasks. Topic Model sup-
pose documents and corpus composed of mixture
topics and then documents can be thought of “bag of
topics”. Thus, these models can handle the problem
effectively about terms dependency. Topics can be

viewed as a probability distribution which implies
semantic coherence about words. For example, a
topic related to fruit would have high probabilities
for the words “orange”, “apple”, and even “juicy”.
Wallach13 demonstrated the “bag of topics” to sur-
pass in performance to “bag of words” in unigram
and bigram schemas.

There are many Topic Models proposed by re-
searchers in the past such as Latent Semantic Anal-
ysis or LSA 4, the probabilistic Latent Semantic
Indexing or pLSI7, Latent Dirichlet allocation or
LDA 1 and so on.

Latent Semantic Analysis (LSA)4 is an approach
that combines both term and document clustering.
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LSA usually takes a term-document matrix in the
vector space representation as input, and uses a sin-
gular value decomposition of the input matrix to
identify a linear subspace in the vector space that
captures most of the variance in the collection. Thus
LSA can map text elements to a representation in
the latent semantic space and can capture some as-
pects of basic linguistic notions such as synonymy
and polysemy.

The probabilistic Latent Semantic Indexing
(pLSI) model introduced by Hofmann7, also known
as the aspect model, was designed as a discrete
counterpart of LSI or LSA to provide a better fit
to text data and overcome deficiencies of Latent
Semantic Indexing (LSI). pLSI is a latent variable
model that models each document as a mixture of
topics. Although there are some problems with the
generative semantics of pLSI, Hoffmann has shown
some encouraging results in Information Retrieval.

As one of these topic models, Latent Dirichlet
Allocation (LDA) has quickly become the most pop-
ular probabilistic text modeling techniques. LDA
has been shown to be effective in the text-related
tasks. Processing fully generative semantics, LDA
overcomes the drawbacks of previous topic mod-
els such as probabilistic Latent Semantic Indexing
(pLSI) which is a MAP/ML estimated LDA model
under a uniform Dirichlet distribution according to
Girolami and Kaban discovery5. Latent Dirichlet
allocation represents documents as mixtures over la-
tent topics differentiated, but pLSI characterize each
topic by a distribution over words. Wei and Croft14

shown the LDA-based document model had good
performance in Information Retrieval. Moveover,
Griffiths and Steyvers6 apply LDA model to find
scientific document topics.

Our goal in this paper is to address a variant of
LDA and an extension of Language Model12, which
is a novel model for text categorization as we known.
This generative model represents words set of each
category with a mixture of topics assumed indepen-
dent as many state-of-the-art approaches did, and ex-
tends these approaches to estimate maximum a pos-
teriori of category language model parameters by as-
suming that variance parameters would be multino-
mial and dirichlet parameters of category language

model.
In Section 2, we briefly review some topic mod-

els proposed in the past. We demonstrate our ap-
proaches on how to estimate parameters of models
and classify documents in section 3. In section 4,
we evaluate correctness and efficiency of our model.
We conclude the paper with a summary, and a brief
discussion of future work in section 5.

2. Related Works

2.1. Probabilistic Latent Semantic Indexing

pLSI 7 was designed as a discrete counterpart of LSI
to provide a better fit to text data. This model ex-
presses each document as a convex combination of
topics, and model co-occurrence data which asso-
ciates an unobserved class variablez ∈ {z1, . . . ,zK}
with each observation. pLSI define a generative
model for word by the following scheme:

• Pick a latent topiczk with probability p(zk|d),
wherep(zk|d) denotes a document-specific prob-
ability of a latent variablezk conditioned on the
documentd.

• Generate a wordwt with probability p(wt |zk),
where p(wt |zk) denotes the class-conditional
probability of a specific wordwt conditioned on
the unobserved class variablezk.

As a result, the probability of a word
wt generating by documentd is p(wt |d) =

∑K
k=1 p(wt |zk) p(zk|d), This amounts to a matrix de-

composition with the constraint that both the vec-
tors and mixture coefficients are normalized to make
them probability distributions. Fitting the model in-
volves determining the topic vectors which are com-
mon to all documents, determining the mixture co-
efficients which are specific for each document, and
determining the model that gives high probability to
the words that appear in the corpusD .

Hofmann applied pLSI to retrieval tasks in the
Vector Space Model framework on small collec-
tions. He exploited pLSI both as a unigram model
to smoothen the empirical word distributions and
as a latent space model to provide a low dimen-
sional document representation. It significantly

Published by Atlantis Press 
    Copyright: the authors 
                  399



Text Categorization Based on Topic Model

overwhelms the standard term schema on retrieval
performance.

2.2. Latent Dirichlet Allocation

In contrast to pLSA which is extended by sampling
those weights from a Dirichlet distribution, LDA1

treats the multinomial weight over topics as latent
random variable. This extension allows the model to
assign probabilities to data outside the training cor-
pus and uses fewer parameters, thus reducing over-
fitting.

LDA represents each document as mixture of
topics, where each topic is a multinomial distribu-
tion over words in a vocabulary. To generate a docu-
ment, LDA first samples a per-document multino-
mial distribution over topics from a Dirichlet dis-
tribution. Then it repeatedly samples a topic from
this multinomial and samples a word from the topic.
The topic discovered by LDA capture correlations
among words. LDA defines a generative model for
word by the following scheme:

• Pick a latent topicz with probability p(z|θ),
where p(z|θ) denotes probability of the topicz
from a multinomial distribution with parameter
vectorθ .

• Generate a word with probabilityp(wt |z,β ),
where p(wt |z,β ) denotes the topic-conditional
probability of a specific wordwt conditioned on
the unobserved topic variablez with a multinomial
distribution parameterβ .

• Pick a multinomial distributionβ for each topicz
from a Dirichlet distributionp(β |η) with param-
eterη .

• Pick multinomial distributionθd for documentd
from a Dirichlet distributionP(θd |α) with param-
eterα .

Thus, the likelihood of generating a corpusD ,
whose vocabulary size isV , is

p(D) = ∏
d∈D

{

∫

p(θd |α)p(β |η)

V

∏
t=1

K

∑
k=1

p(zt = k|θd)p(wt |zt = k,β )dθddη
}

3. Latent Dirichlet Allocation Category
Language Model

In this section we introduce our model that ex-
tends latent dirichlet allocation and Language Model
called Latent Dirichlet Allocation Category Lan-
guage Model. With the model defined, we turn to ap-
proximate posterior inference, parameter estimation.
We develop a variational inference procedure for ap-
proximating the posterior. Moreover, we use this
procedure in a variational expectation-maximization
(EM) algorithm for parameter estimation. Finally,
we show how a model whose parameters have been
estimated can be used as a text categorization model.

3.1. Notation

We will describe LDACLM here using the notations
similarly in the LDA. Suppose we haveM categories
or words sets,w1,w2, . . . ,wM, which can be viewed
as category language models, containing words form
corpusD who has a vocabulary of sizeV . In other
words, one words set is “bag of words” of one cat-
egory. The corpus of text documents is summarized
in a M by V co-occurrence table, where tft,w stores
the number of occurrences of a wordwt in words set
w.

We would like to usep(z|θw) to denote prob-
ability of the topicz ∈ {1,2, . . . ,K} from a multi-
nomial distribution with parameter vectorθw speci-
fied to words setw, p(wt |z,β ) to denote the topic-
conditional probability of a specific wordwt con-
ditioned on the unobserved topic variablez with a
multinomial distribution parametersβ , P(θw|α) to
denote the probability of vectorθw with Dirichlet
distribution scalar parameterα .

3.2. Model Structure

As we know, LDA descripted in1 used as di-
mension reducer in the discriminative framework
of documents classification. But, as a variant of
LDA, Latent Dirichelt Allocation Category Lan-
guage Model or LDACLM regards the document in
the same category generated by LDA distribution re-
spectively. LDA distributions in LDACLM have the
same Dirichlet prior parameters.
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The prominent feature of LDACLM is that the
model assume each word would be a independent
topic that we called word topic and assume extra
topics other than word topics would be model the
correlation among the words. As we know, this dis-
tinguish to LDA and also tradeoff between effective
and time consuming. The following process simi-
lar to LDA generates documents in the LDACLM
model, represented as Fig.1.

• For each category language model or words set
w, pick multinomial distributionθw from a sym-
metric Dirichlet distributionp(θw|α) with prior
scalar parameterα which is identity to all cate-
gory language models.

• Pick a topic z from a multinomial distribution
p(z|θw) with parameter vectorθw.

• Pick a wordwt from a multinomial distribution
p(wt |z,β ) with parameter vectorβ . Each param-
eterβz in the vectorβ relates to specificz respec-
tively.

c θ z w

α β

M
V

K

Fig. 1. Graphical model representation of LDACLM

3.3. Inference

The maximum likelihood of category language
modelw with model parameter vectorβ and model
dirichlet parameterα may formulate as:

p(w|α ,β )

∝
∫

(

K

∏
k=1

θα−1
k

)





V

∏
t=1

{

K

∑
k=1

(θkβk,t)

}tft,w


dθ

where word setw contains words from corpusD
who has a vocabulary of sizeV and tft,w stores the
number of occurrences of a wordwt in word setw.

Similar to LDA 1, We develop a variational ap-
proximation 9 for LDACLM by defining an ap-
proximating family distributionq(θ ,z|w,γ ,φ), and
choose the variational Dirichlet parameter vector
γ and variational multinomial parameter vectorφ
which are different sets for each category language
model to yield a tight approximation to the true pos-
terior.The variational distribution of LDACLM is
represented as Fig.2.

C

γ

θ

φ

Z w

M
V

Fig. 2. Graphical model representation of the variational
distribution to approximation the posterior in LDACLM

Suppose the factorized variational parameters
distribution is

q(θ ,z|w,γ ,φ) = q(θ |w,γ)
V

∏
t=1

q(zt |w,φt)

with variational Dirichlet parameter vectorγ and
variational multinomial parameter vectorφ . Espe-
cially, for each category language model, there is a
different set of multinomial and Dirichlet variational
parameter vectors. Thus, minimization of the KL di-
vergenceD(q(θ ,z|w,γ ,φ)‖p(θ ,z|w,α ,β )) we can
derive approximation ofp(θ ,z|w,α ,β ).

So, we can take decreasing steps in the KL diver-
gence and converge to optimizing parameter by an
iterative fixed-point method, bounding the marginal
likelihood of a document using Jensen’s inequality9.

logp(w|α ,β ) >Eq {logp(θ ,z,w|α ,β )}

−Eq{logq(θ ,z|w,γ ,φ)}
(1)
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Letting L (γ ,φ |w,α ,β ) denote the right-hand side
of Eq.(1)

L (γ ,φ |w,α ,β ) =Eq {logp(θ ,z,w|α ,β )}

−Eq {logq(θ ,z|w,γ ,φ)}
(2)

Because we already have11

Eq
{

log(θk)|γ
}

= Ψ(γk)−Ψ

(

K

∑
k=1

γk

)

and expand Eq.(2), we have

L (γ ,φ |w,α ,β )

=logΓ

(

K

∑
k=1

αk

)

−
K

∑
k=1

logΓ(αk)

+
K

∑
k=1

(αk −1)

(

Ψ(γk)−Ψ

(

K

∑
j=1

γ j

))

+
V

∑
t=1

K

∑
k=1

φt,k

(

Ψ(γk)−Ψ

(

K

∑
j=1

γ j

))

+
V

∑
t=1

K

∑
k=1

tft,wφt,k logβt,k

− logΓ

(

K

∑
k=1

γk

)

+
K

∑
k=1

logΓ(γk)

−
K

∑
k=1

(γk −1)

(

Ψ(γk)−Ψ

(

K

∑
j=1

γ j

))

+
V

∑
t=1

K

∑
k=1

φt,k logφt,k

(3)

whereΓ( ·) is gamma function,Ψ( ·) is digamma
function.

Firstly, we maximize Eq.(3) with respect toφt,k

which is the probability of the wordt generated by
latent topicz. This is a constrained maximization
with constraint

K

∑
k=1

φt,k = 1

We form the Lagrangian by isolating the terms
which containφt,k and add the appropriate Lagrange

multipliers λ , so we have

L
w
[φt,k]

=φt,k

(

Ψ(γk)−Ψ

(

K

∑
j=1

γ j

))

+ tft,wφt,k logβt,k + φt,k logφt,k

+ λt

(

K

∑
k=1

φt,k −1

)

(4)

Taking derivative with respect toφt,k and setting the
derivative to zero yields the maximized , we have

φt,k ∝ (βt,k)
tft,w exp

(

Ψ(γk)−Ψ

(

K

∑
j=1

γ j

))

(5)

Secondly, we maximize Eq.(3) with respect toγk,
the kth component of the posterior Dirichlet param-
eter. Like Eq.(4), we also have

L[γ ] =
K

∑
k=1

(

Ψ(γk)−Ψ

(

K

∑
j=1

γ j

))(

αk +
V

∑
t=1

φt,k − γk

)

− logΓ

(

K

∑
j=1

γ j

)

+
K

∑
k=1

logΓ(γk)

(6)
Take the derivative with respect toγk and setting to
zero yields a maximum:

γk = αk +
V

∑
t=1

φt,k (7)

3.4. Estimating

Given a corpus ofD = {w1, . . . ,wM} that w
is a category language model, we use a vari-
ational expectation-maximization (EM) algorithm
(expectation-maximization algorithm with a varia-
tional expectation Step)1 to find the parameters and
which maximize a lower bound on the log marginal
likelihood:

ℓ(α ,β ) = ∑
w∈D

log p(w|α ,β )

As we have described above, we can bound the
log likelihood using

log p(w|α ,β ) =L (γ ,φ |w,α ,β ) (8)

+ D(q(θ ,z|w,γ ,φ)‖p(θ ,z|w,α ,β ))
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Which exhibits L (γ ,φ |w,α ,β ) as a lower
bound because the KL term is positive. We now
obtain a variational EM algorithm that repeats the
following two steps until Eq.(8) converges:

• (E step) Optimize values for the variational pa-
rameter vectorsγ and φ for each category lan-
guage model. The update rules are Eq.(5) and
Eq.(7).

• (M step) Maximize the resulting lower bound on
the log likelihood with respect to the model pa-
rameterα and parameter vectorβ . We can do
this by finding the maximum likelihood estimates
with expected sufficient statistics computed in the
E-step.

Firstly, we maximize Eq.(3) with respect toβt,k.
This is a constrained maximization with constraint

V

∑
t=1

βt,k = 1.

We form the Lagrangian by isolating the terms
which containβt,k and add the appropriate Lagrange
multipliers. So, we have

L[βt,k ] = ∑
w∈D

V

∑
t=1

K

∑
k=1

tft,wφt,k logβt,k

+
K

∑
k=1

λk

(

V

∑
t=1

βt,k −1

) (9)

Taking derivatives with respect toβt,k and setting the
derivative to zero yields the maximizedβt,k, we have

βt,k ∝ ∑
w∈D

tft,wφt,k

Secondly, we maximize Eq.(3) with respect toα .
Like Eq (9) and derive

L[α ] = ∑
w∈D

{

logΓ

(

K

∑
k=1

αk

)

−
K

∑
k=1

logΓ(αk)

+
K

∑
k=1

(αk −1)

(

Ψ(γk)−Ψ

(

K

∑
j=1

γ j

))}

Then, take first derivative and second derivative with
respective toα (α is a scalar dirichlet parameter).

So according Newton-Raphson formula, we can find
the maximalα by iteration as following:

αnew = α −
A +B

MK (KΨ′ (Kα)−Ψ′(α))

A = MK (Ψ(Kα)−Ψ(α))

B = ∑
w∈D

K

∑
k=1

{

Ψ(γk,w)−Ψ

(

K

∑
k=1

γk,w

)}

whereΨ′ is trigamma function.

3.5. Maximum a Posteriori of Multinomial
Parameter

After model parameterα , model parameter vector
β and variational parameter vectorφ converged, we
can fit the variational parameter vectorγ as Eq.(7)
description.

As we have described in Subsection 3.2, the
prominent feature of LDACLM is that the model as-
sume each word would be a independent topic that
we called word topic and assume extra topics other
than word topics would be model the correlation
among the words. Because LDACLM Variational
inference of each categoryw need to calculate the
different variational parametersφ , and each varia-
tional parametersφ are multiplied by the number
of characteristics which necessarily limits the num-
ber of topics due to limited computer memory. So
we present a compromise approach in our LDACLM
model. We assume that each word is a independent
topic, and derive semantic topic from reasoning. Ac-
tually, we derive a total ofK = K +V topics, where
V say that the number of characteristics andK is the
number of semantic topics. Model parametersβ is
also need to expand. For the independent topic,βt,k

associated with one independent topic is 1 , the oth-
ers were 0; For the semantic topic,βt,k can be esti-
mate by the above description method.

Hereafter, for specific category language model
w, the maximum a posteriori of multinomial param-
eter in vectorθ w can be computed approximately ac-
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cording to Frequentist approach to probability as

θw
k =

ηγw
k

∑V
t=1 xt,w + η ∑K

j=1 γw
j

k = {1,2, . . . K}

θw
t+K =

xt,w

∑V
t=1 xt,w + η ∑K

j=1 γw
j

t = {1,2, . . . V}

whereη is a constant number related to specified
corpus.

Next, based on our model, we can derive maxi-
mum likelihood of documentd generating by cate-
gory language modelw as following formula:

p(d|w) ∝ ∏
t∈d

{

K

∑
k=1

(θw
k βt,k)

}tft,d

(10)

Eventually, we can classify new documentd ac-
cording to Eq.(10). The documentd belong to cate-
gory language modelw who generated with maxi-
mum probability.

4. Experiments and Results

We have conducted experiments on three real-
world datasets, Reuters21578, WebKB and 20News-
groups, to evaluate the effectiveness of our proposed
model for text categorization.

4.1. Datasets

The Reuters21578∗dataset contains documents col-
lected from Reuters newswire articles which are as-
signed to 135 categories. However, there are only
non-empty 118 categories, among which the 10
most frequent categories called R10 by Debole3

contain about 75% of the documents as Table 1
show. There are several ways to split the docu-
ments into training and testing sets: ‘ModLewis’
split, ‘ModApte’ split, and ‘ModHayes’ split. The
‘ModApte’ train/test split is widely used in text clas-
sification research. We followed the ‘ModApte’ split
in which the 10 most frequent categories called R10
represented in Table 1, and a large number of docu-
ments are used for training and testing.

Table 1. Number of Training and Test documents About R10

Category name Num Train Num test
earn 2877 1087
acq 1650 719
money-fx 538 179
grain 433 149
crude 389 189
trade 369 118
interest 347 131
wheat 212 71
ship 197 89
corn 182 56

The 20Newsgroups(20NG)†dataset is a collec-
tion of approximately 20,000 documents that were
collected from 20 different newsgroups with about
1000 messages from each newsgroup. This collec-
tion consists of 19,974 non-empty documents dis-
tributed evenly across 20 newsgroups and we se-
lected 19,946 non-empty documents after feature se-
lection. We use the newsgroups to form categories,
and randomly select 70% of the documents to be
used for training and the remaining 30% for testing.

The WebKB‡dataset contains manually classified
Web pages that were collected from the computer
science departments of four university(Cornell,
Texas, Washington and Wisconsin) and some other
university. The pages are divided into seven cate-
gories: student, faculty, staff, course, project, de-
partment and other. In this paper, we use the four
most populous entity-representing categories: stu-
dent, faculty, course, and project, which all together
contain 4199 pages. We called this selected We-
bKB dataset as WebKB top-4 dataset. Like handling
20Newsgroup dataset, We randomly select 70% of
the documents to be used for training and the re-
maining 30% for testing.

4.2. Experiments

We employed free software MALLET10 to imple-
ment the Naı̈veBaye(NB) with Laplace smoothing

∗http://www.daviddlewis.com/resources/testcollections/reuters21578/reuters21578.tar.gz
†http://people.csail.mit.edu/jrennie/20Newsgroups
‡http://people.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data
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and Rocchio methods for document classification
tasks. Developed by Andrew McCallum, MALLET
is a library of Java code for machine learning applied
to text. It provides facilities for many natural lan-
guage processing, such as document classification.
Because the MALLET software does not handle
the Reuters21578 dataset and WebKB dataset, we
write extra Java code to read Reuters21578 and We-
bKB datasets in MALLET format. For these three
datasets, we performed stop word removal, stem-
ming, and case-conversion to lower case before fea-
ture selection was applied on the training set. Fur-
thermore, We apply to information gain15 feature
selecting method to the documents by set informa-
tion gain threshold 0.055 for 20NG dataset, 0.3 for
Reuters dataset and−0.044 for WebKB dataset.

We deployed LIBSVM 2 implementation of
SVM which uses the “one vs rest” method for multi-
category classification because of its effectiveness
and efficiency. Because there are a little difference
between polynomial kernel and RBF kernel for LIB-
SVM in classifying documents, we use polynomial
kernel for SVM in this paper. Most of LIBSVM
parameters are set to default values and polynomial
kernel parameter gamma and coef0 are set to 0.0003
and 1.0 for Reuters21578 datasets, 0.0005 and 1.1
for WebKB dataset, 0.0003 and 1.0 for 20News-
groups dataset.

We have tried our proposed LDACLM with 100
topics modeling the relationship among words and
extra topics set in that each topic belong to one word
respectively. Moreover the parameterη of LDA-
CLM has been set to 1.5 for Reuters dataset, 1.3 for
WebKB dataset and 2.0 for 20Newsgroups dataset.
Table 2. The F1 experimental results on the Reuter R10 dataset

NB SVM LDACLM Rocchio
earn 0.982 0.976 0.981 0.973
grain 0.561 0.615 0.571 0.404
wheat 0.308 0.029 0.323 0.503
crude 0.783 0.790 0.798 0.780
acq 0.962 0.954 0.960 0.949
ship 0.673 0.651 0.656 0.725
interest 0.673 0.670 0.684 0.693
money-fx 0.723 0.725 0.757 0.719
corn 0.206 0.074 0.254 0.468
trade 0.817 0.824 0.817 0.831
Macro-aver F1 0.678 0.669 0.690 0.716

Table 3. The F1 experimental results on the WebKB top-4
dataset

NB SVM LDACLM Rocchio
course 0.946 0.933 0.95 0.880
student 0.885 0.871 0.894 0.850
project 0.813 0.724 0.795 0.741
faculty 0.825 0.830 0.837 0.765
Macro-aver F1 0.868 0.841 0.869 0.811

The results of Naı̈veBayes, LDACLM, Rocchio
and SVM with polynomial kernel on three datasets
described in Subsection 4.1 are shown in Figure 3,
Figure 4 and Figure 5 respectively. In these figures,
‘NB’ means Naı̈veBayes, ‘SVM’ means LIBSVM
with polynomial kernel, ‘Macro-aver’ means macro-
averaging result. and ‘Micro-aver’ means micro-
averaging results.

The F1 values of Naı̈veBayes, LDACLM, Roc-
chio and SVM with polynomial kernel on the three
datasets are shown in Table 3, Table 2 and Table 4
respectively. The experimental results in tables has
been derived by information gain feature selection.
Especially, The number of features is 8000 for We-
bKB top-4 dataset, 8000 for Reuters R10 dataset,
13000 for 20NG dataset.

As Figure 4 shown, the experimental results on
Reuters R10 show that support vector machine with
polynomial kernel and Rocchio are more robust than
Naı̈ve Bayes and LDACLM, but their accuracy are
very similar. As Table 2 shown, when the features
number is 8000, the F1 value of SVM algorithm
about ‘wheat’ and ‘corn’ categories are 0.029 and
0.074 . However, the F1 value of LDACLM model
about the two categories are 0.323 and 0.254. More-
over the F1 value of LDACLM model is more higher
than Naı̈ve Bayes. On Reuters R10 dataset, the Roc-
chio algorithm do the best job. When the number
of features is more than 8000, the the recall rate
of LDACLM begin to decline , which also shows
that independence topics increasing will result in the
worse performance.
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Figure 3: The Results of NB,SVM,LDACLM and Rocchio algorithms on WebKB top-4 Dataset
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Figure 4: The Results of NB,SVM,LDACLM and Rocchio algorithms on R10 Dateset
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Figure 5: The Results of NB,SVM,LDACLM and Rocchio algorithms on 20NG Dataset

Table 4. The F1 experimental results on the 20NG dataset

NB SVM LDACLM Rocchio
alt.atheism 0.744 0.709 0.743 0.655
comp.graphics 0.747 0.762 0.749 0.699
comp.os.ms-windows.misc 0.087 0.789 0.189 0.021
comp.sys.ibm.pc.hardware 0.674 0.765 0.685 0.597
comp.sys.mac.hardware 0.759 0.825 0.788 0.675
comp.windows.x 0.768 0.851 0.759 0.639
misc.forsale 0.789 0.624 0.742 0.704
rec.autos 0.907 0.845 0.908 0.851
rec.motorcycles 0.930 0.910 0.934 0.910
rec.sport.baseball 0.955 0.932 0.947 0.922
rec.sport.hockey 0.954 0.932 0.944 0.938
sci.crypt 0.908 0.905 0.907 0.818
sci.electronics 0.831 0.781 0.806 0.712
sci.med 0.914 0.898 0.925 0.882
sci.space 0.925 0.910 0.908 0.861
soc.religion.Christian 0.887 0.884 0.878 0.816
talk.politics.guns 0.833 0.825 0.837 0.782
talk.politics.mideast 0.914 0.889 0.922 0.871
talk.politics.misc 0.745 0.718 0.764 0.635
talk.religion.misc 0.472 0.474 0.477 0.396
Macro-aver F1 0.807 0.816 0.810 0.733
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As Figure 5 and Figure 3 shown, LDACLM out-
perform the Naı̈ve Bayes and Rocchio on Reuters
R10 and WebKB top-4 datasets. With less features,
SVM is better than LDACLM in performance. On
the 20NG dataset, when the number of featurs is
13000, the F1 values of SVM are larger than those
of LDACLM as Table 4 shown. However, on the
WebKB top-4 dataset, when the number of features
is 8000, the F1 values of LDACLM are larger than
those of SVM as Table 3 shown.

Specially, All results are averaged across 5 ran-
dom runs for 20NG and WebKB datatsets. In result,
LDACLM outperform Naı̈veBayes with Laplace
smoothing and Rocchio algorithm, but SVM pro-
vide much better computational accuracy than LDA-
CLM. Rocchio algorithm do the best on Reuters
dataset, but present poor performance on WebKB
and 20NG.

In Table 5, we show the test collection classifica-
tion speed of LDACLM method compare with Naı̈ve
Bayes, Rocchio and SVM running on a Dell Opti-
plex 745 computer.

Table 5. The Naı̈ve Bayes, LDACLM, Rocchio and SVM clas-
sification speed

NB LDACLM Rocchio SVM
20NG 0.234s 0.318s 15.157s 1138.234s
R10 0.062s 0.078s 1.734s 108.750s
WebKB 0.011s 0.018s 0.387s 28.324s

The data unit is second in Tabel 5. So we can
conclude that the LDACLM is also a efficient clas-
sifier for the three real-world text collections.

5. Conclusion and Future Work

This paper proposed Latent Dirichlet Allocation
Category Language Model, a novel model based on
LDA model. We have presented variational infer-
ence approach, and parameters estimation method
which is similar to LDA 1 in category lan-
guage model. As Results on WebKB, 20NG and
Reuters21578 datasets shown above, LDACLM can-
not significantly improve performance. In our opin-
ion, we think that it was because the semantic top-
ics modeling the relationship among words is not
abundant which constraint by computer memory. In

the future work, we will try use topics by collec-
tion from Wordnet based on Gibbs sample, and this
maybe create many topics which approximate words
dependency than variational inference do.
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