
A Unifying Framework for Analysis and Evaluation of Inductive Programming
Systems∗

Martin Hofmann and Emanuel Kitzelmann and Ute Schmid
Faculty Information Systems and Applied Computer Science

University of Bamberg, Germany
{martin.hofmann, emanuel.kitzelmann, ute.schmid}@uni-bamberg.de

Abstract

In this paper we present a comparison of several inductive
programming (IP) systems. IP addresses the problem of
learning (recursive) programs from incomplete specifications,
such as input/output examples. First, we introduce condi-
tional higher-order term rewriting as a common framework
for inductive logic and inductive functional program synthe-
sis. Then we characterise the several ILP systems which be-
long either to the most recently researched or currently to the
most powerful IP systems within this framework. In conse-
quence, we propose the inductive functional system IGOR II
as a powerful and efficient approach to IP. Performance of all
systems on a representative set of sample problems is evalu-
ated and shows the strength of IGOR II.

Introduction
Inductive programming (IP) is concerned with the synthesis
of programs or algorithms from incomplete specifications,
such as input/output (I/O) examples. Focus is on the synthe-
sis of declarative, i.e., logic, functional, or functional logic
programs. Research in IP provides better insights in the cog-
nitive skills of human programmers. Furthermore, power-
ful and efficient IP systems can enhance software systems
in a variety of domains—such as automated theorem prov-
ing and planning—and offer novel approaches to knowledge
based software engineering and model driven software de-
velopment, as well as end user programming support in the
XSL domain (Hofmann 2007). Depending on the target lan-
guage, IP systems can be classified as inductive logic pro-
gramming (ILP), inductive functional programming (IFP) or
inductive functional logic programming (IFLP).

Beginnings of IP research addressed inductive synthesis
of functional programs from small sets of positive I/O exam-
ples only (Biermann et al. 1984). One of the most influen-
tial classical systems was THESYS (Summers 1977) which
synthesised linear recursive LISP programs by rewriting I/O
pairs into traces and folding of traces based on recurrence
detection. Currently, induction of functional programs is
covered by the analytical approaches IGOR I (Kitzelmann
and Schmid 2006), and IGOR II (Kitzelmann 2007) and by

∗Research was supported by the German Research Community
(DFG), grant SCHM 1239/6-1.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the evolutionary/search-based approaches ADATE (Olsson
1995) and MAGICHASKELLER (Katayama 2005). Analyti-
cal approaches work example-driven, so the structure of the
given I/O pairs is used to guide the construction of gener-
alised programs. Search-based approaches first construct
one or more hypothetical programs, evaluate them against
the I/O examples and then work on with the most promising
hypotheses.

In the last decade, some inductive logic programming
(ILP) systems were presented with focus on learning recur-
sive logic programs in contrast to learning classifiers: FFOIL
(Quinlan 1996), GOLEM (Muggleton and Feng 1990), PRO-
GOL (Muggleton 1995), and DIALOGS-II (Flener 1996).
Synthesis of functional logic programs is covered by the sys-
tem FLIP (Hernández-Orallo et al. 1998).

IP can be viewed as a special branch of machine learning
because programs are constructed by inductive generalisa-
tion from examples. Therefore, as for classification learn-
ing, each approach can be characterised by its restriction and
preference bias (Mitchell 1997). However, IP approaches
cannot be evaluated with respect to some covering measure
or generalisation error since (recursive) programs must treat
all I/O examples correctly to be an acceptable hypothesis.

Current IP systems not only differ with respect to the tar-
get language and the synthesis strategies but also with re-
spect to the information which has to or can be presented
and the scope of programs which can be synthesised. Un-
fortunately, up to now there is neither a systematic empir-
ical evaluation of IP systems nor a general vocabulary for
describing and comparing the different approaches in a sys-
tematic way (see (Hofmann, Kitzelmann, and Schmid 2008)
for a preliminary evaluation of some systems and (Flener
and Yilmaz 1999) for a treatment of ILP systems). We be-
lieve that both is necessary for further progress in the field:
Only if the relative strengths and weaknesses of the different
systems become transparent, more powerful and efficient ap-
proaches can be designed by exploiting the strengths of the
given approaches and tackling their weaknesses.

We first present conditional combinatory term rewriting
as a framework for describing IP systems. Afterwards, sev-
eral systems are characterised and compared in this frame-
work and their performance is evaluated on a set of represen-
tative sample problems and shows the strength of IGOR II.
We conclude with ideas on further research.

AGI-2009 - Published by Atlantis Press, © the authors
 <1>

A Unified Framework for IP
Conditional Constructor Systems
We shortly introduce term rewriting and conditional con-
structor systems as, e.g., described in (Baader and Nipkow
1998; Terese 2003). For a signature, i.e., a set of function
symbols Σ and a set of variables X we denote the set of all
terms over Σ and X by TΣ(X) and the (sub)set of ground
(variable free) terms by TΣ. We distinguish function sym-
bols that denote datatype constructors from those denoting
(user-)defined functions. Thus Σ = C ∪ F , C ∩ F = ∅
where C contains the constructors and F the defined func-
tion symbols respectively. We uniformly represent an in-
duced program in a functional style as a set R of recur-
sive equations (rules) over a signature Σ. The equations are
applied as simplification (or rewrite) rules (as known from
functional programming) from left to right, i.e., they form a
term rewriting system. The lefthand side (lhs) l of a rewrite
rule l→ r has the form F (p1, . . . , pn), called function head,
where F ∈ F is the name of the function implemented by
(amongst others) this rule, i. e., a defined function symbol,
and the pi ∈ TC(X) are built up from constructors and vari-
ables only. We call terms from TC(X) constructor terms.
The sequence of the pi is called pattern. This format of rules
or equations is known as pattern matching in functional lan-
guages such as HASKELL. In the term rewriting setting, a
TRS with this form is called constructor (term rewriting)
system (CS). All variables of the righthand side (rhs) must
also occur in the lhs, i.e. they must be bound (by the lhs). If
no rule applies to a term the term is in normal form.

Each rewrite rule may be augmented with a condition that
must be met to apply the conditional rule. A term rewrit-
ing system or constructor system is called conditional term
rewriting system or conditional constructor system (CCS)
respectively if it contains at least one conditional rule. A
condition is an ordered conjunction of equality constraints
vi = ui with vi, ui ∈ TΣ(X). Each ui must be grounded if
the lhs of the rule is instantiated and if all equalities vj = uj

with j < i evaluate to true, then ui evaluates to some ground
normal form. For the vi must hold (i) either the same as for
the ui or (ii) vi may contain unbound variables but then it
must be a constructor term. In the first case also vi eval-
uates to some ground normal form and the equality eval-
uates to true if both normal forms are equal. In the sec-
ond case the equality evaluates to true if vi and the ground
normal form of ui unify. Then the free variables in vi are
bound and may be used in the following conjuncts and the
rhs of the rule. We write conditional rules in the form:
l→ r ⇐ v1 = u1, . . . , vn = un. Figure 1(1) shows an ex-
ample. Rules without a condition are called unconditional.
If we apply a defined function to ground constructor terms
F (i1, . . . , in), we call the ii inputs of F . If such an appli-
cation normalises to a ground constructor term o we call o
output. A CCS is terminating if all rewriting processes end
up in a normal form. In order to implement functions the
outputs are required to be unique for each particular input
vector. This is the case if the TRS is confluent.

To lift a CCS into the higher-order context and ex-
tend it to a (conditional) combinatory rewrite system

((C)CRS) (Terese 2003) we introduce meta-variables XM =
X,Y, Z, . . . such that X = XM ∪ XT with XM ∩
XT = ∅ where XT includes all first-order variables over
terms. Meta-variables occur as X(t1, . . . , tn) and al-
low for generalisation over functions with arity n. To
preserve the properties of a CS, we need to introduce
an abstraction operator [−]− to bind variables locally
to a context. The term [A]t is called abstraction and
the occurrences of the variable A in t are bound. For
example the recursive rule for the well-known function
map would look like map([A]Z(A), cons(B,C)) →
cons(Z(B),map([A]Z(A), C)) and would match follow-
ing term map([A]square(A), cons(1, nil)).

Target Languages in the CCRS Framework
To compare all systems under equal premises, the different
occurrences of declarative languages are out into the CCRS
framework1. Considering functional target languages, the
underlying concepts are either based on abstract theories
(equational theory (Hernández-Orallo et al. 1998), CS
(Kitzelmann 2007)), or concrete functional languages (ML
(Olsson 1995), HASKELL (Katayama 2005)). Applying the
CCRS framework to IFP or IFLP systems is straight for-
ward, since they all share the basic principles and functional
semantics. This is in particular the case with IFLP, which
provided the theoretical framework for FLIP. However con-
trarily to IFLP, we additionally want to qualify for express-
ing the basic constructs of functional languages in the CCRS
framework and both apply it to existing systems for a well-
founded analysis and evaluation.

In addition to pattern matching and the functional opera-
tional semantics of CS, CCS can express constructs as if-,
case-, and let-expressions in a rewriting context. The if-
then part of an if-expression can be modeled by a condition
v = u following case (i) in the previous section. A case-
expression is modeled following case (ii), where v ∈ TC(X)
and v 6∈ X . If v ∈ X , case (ii) models a local variable dec-
laration as in a let-expression. Fig. 1(2) shows a CCRS for
the HASKELL program containing a let-expression.

In the context of IP, only logic target programs where
the output is uniquely determined by the input are consid-
ered. Such programs usually are expressed as “functional”
predicates such as multlast in Fig. 1(3). Transforming Horn
clauses containing functional predicates into CCSs is a gen-
eralisation of representing Horn clauses as conditional iden-
tities (Baader and Nipkow 1998).

IP in the CCRS Framework
Let us now formalise the IP problem in the CCRS setting.
Given a CCRS, both, the set of defined function symbols F
and the set of rules R, be further partitioned into disjoint
subsets F = FT ∪ FB ∪ FI and R = E+ ∪ E− ∪ BK,
respectively. FT are the function symbols of the functions
to be synthesised, also called target functions. FB are the

1Note the subset relationship between that CS, CCS, and CCRS.
So, if the higher-order context is of no matter we use the term CCS,
otherwise CCRS.

AGI-2009 - Published by Atlantis Press, © the authors
 <2>

(1) CCRS

mlast([]) -> []

mlast([A]) -> [A]

mlast([A,B|C]) -> [D,D|C]

<= [D|C] = mlast([B|C])

(2) Functional (Haskell)

mlast([]) = []

mlast([A]) = [A]

mlast([A,B|C]) =

let [D|C] = mlast([B|C])

in [D,D|C]

(3) Logic (Prolog)

mlast([], []).

mlast([A], [A]).

mlast([A,B|C],[D,D|C]) :-

mlast([B|C],[D|C]).

Figure 1: Equivalent programs of multlast

symbols of predefined functions that can be used for syn-
thesis. These can either be built in or defined by the user
in the background knowledge BK. FI is a pool of func-
tion variables that can be used for defining invented func-
tions on the fly. E+ is the set of positive examples or evi-
dence and E− the set of negative examples, both containing
a finite number of I/O pairs as unconditional rewrite rules
F (t1, . . . , tn) → r, where F ∈ FT and t1, . . . , tn, r ∈
TC(XT). The rules in E− are interpreted as inequality con-
straints. BK is a finite set of conditional or unconditional
rules F (t1, . . . , tn)→ r ⇐ v1 = u1 ∧ . . .∧ vn = un defin-
ing auxiliary concepts that can be used for synthesising the
target function, where F ∈ FB , t1, . . . , tn ∈ TC(X), and
r, ui, vi ∈ TB(X). Furthermore, it is requested that for each
symbol f ∈ FT (FB), there is at least one rule in RT (RB)
with function name f .

With such a given CCRS, the IP task can be now described
as follows: find a finite set RT of rules F (t1, . . . , tn) →
r ⇐ v1 = u1 ∧ . . . ∧ vn = un (or program for short) where
F ∈ F , t1, . . . , tn ∈ TC(X), and r, ui, vi ∈ T (X), such
that it covers all positive examples (RT ∪ BK |= E+, pos-
terior sufficiency or completeness) and none of the negative
examples (RT ∪BK 6|= E−, posterior satisfiability or con-
sistency). In general, this is done by discriminating between
different inputs using patterns on the lhs or conditions mod-
elling case-expressions and computing the correct output
on the rhs. To compute the output constructors, recursive
calls, functions from the background knowledge, local vari-
able declarations, and invented functions can be used. An
invented function is hereby a function which symbol occurs
only in FI , i. e. is neither a target function nor defined in the
BKand is defined by the synthesis system on the fly.

However, there is usually an infinite number of programs
satisfying these conditions, e. g.E+ itself, and therefore two
further restrictions are imposed: A restriction on the terms
constructed, the so called restriction bias and a restriction on
which terms or rules are chosen, the preference bias.

The restriction bias allows only a specific subset of the
terms defined for ui, vi, l, r in a rule F (t1, . . . , tn) → r ⇐
u1 = v1 ∧ . . . ∧ un = vn, e.g., prohibiting nested or mutual
recursion or demanding the rhs to follow a certain scheme.

The preference bias imposes a partial ordering on terms,
lhss, rhss, conditions or whole programs defined by the CCS
framework and the restriction bias. A correct program syn-
thesised by a specific system is optimal w. r. t. this ordering
and satisfying completeness and consistency.

Table 1: Systems’ characteristics summary
C FT FB FI E+ E− BK XM

ADATE • {·} • • • • • ∅
FLIP • • • ∅ ◦ ◦,∅ • ∅
FFOIL c • ⊃ ∅ ◦ ◦,∅ ◦ ∅
GOLEM • {·} • ∅ ◦ ◦ • ∅
IGOR I • {·} ∅ • ◦ ∅ ∅ ∅
IGOR II • • • • ◦ ∅ ◦ ∅
MAGH. • {·} • ∅ • • • ◦

• unrestricted / conditional rules ◦ restricted / unconditional rules
{·} singleton set ∅ empty set
c constants ⊃ built in predicates

Systems Description in the CCRS Framework
We will consider only FFOIL, GOLEM, FLIP, MAGIC-
HASKELLER IGOR I and IGOR II. The prominent systems
FFOIL and GOLEM shall provide a baseline, as representa-
tives of ILP systems, against which the other systems can
be compared. The others belong either to the most recent
or currently to the most powerfull IP systems and attest the
current focus of research on IFLP and IFP.

PROGOL and DIALOGS-II have been excluded, because
they make heavily use of background knowledge which goes
beyond the notion the other systems have. DIALOGS-II as an
interactive system collects much more evidence which is not
expressable in I/O examples, because it virtually allows for
Horn clauses in E+ and E−. Similarly the mode declara-
tions of PROLOG. To allow for learning programs (unlike
learning classifiers), mode declarations specify positions of
recursive calls and correct data type decompositions would
be necessary, which makes the task of IP uninteresting.

Table 1 summarises the classification of the mentioned
systems into the CCRS framework and Table 2 the systems’
restriction bias and the expressiveness of the conditions in a
rule. The following paragraphs sketching the covering and
search strategy, the search space and the preference bias.

ADATE as an evolutionary computation system employs
search techniques that are inspired by basic biological prin-
ciples of evolution, like for instance mutation and crossover.
Starting from a trivial initial program, offsprings are gen-
erated which are tested against the I/O examples and rated
using criteria as time and memory usage as preference bias.
Only the “fittest” programs are developed further as the
search progresses until eventually one program covers all
I/O examples and it is aborted by the user. In this way,
ADATE searches the space of all programs, in a subset of
ML, globally, covering the examples via a generate and test.

FFOIL (Quinlan 1996) is an early representative of a func-
tional top-down learning system. Starting with an empty set
of conditions, it continues adding gainful literals to a rule
until it covers no negative examples anymore. Which condi-
tions to add is determined by a information-based heuristic
called foil gain. It favours literals with a high information
gain, i e., which discriminate notably between positive and

AGI-2009 - Published by Atlantis Press, © the authors
 <3>

negative evidence when added to a rule. All examples ex-
plained by this rule are removed from E+ and another rule
is learnt until E+ is empty. If no candidate literals are gain-
full enough, all so called determinate literals are added. A
determinate literal does not deteriorate the foil gain of the
current rule, but introduces new variables. So FFOIL tra-
verses the space of Horn clauses heuristically lead by the
foil gain following a greedy sequential covering strategy.

FLIP (Hernández-Orallo et al. 1998) is a representative
of the IFLP approach. It starts from all possible consistent
restricted generalisations (CRG) deriveable from the posi-
tive example equations. A restricted generalisation (RG) is
a generalisation without introducing new variables on the rhs
of the equation. A RG is consistent if it does not cover any
negative example when interpreted as a rewrite rule.

Informally, narrowing combines resolution from logic
programming and term reduction from functional program-
ming. FLIP uses its inverse, similar as inverse resolution,
called inverse narrowing to solve the induction problem.

FLIP’s core algorithm is based CRG and inverse narrow-
ing which induce a space of hypothesis programs. It is
searched heuristically using a combination of minimum de-
scription length and coverage of positive examples as pref-
erence bias, following a sequential covering strategy.

GOLEM (Muggleton and Feng 1990) uses a bottom-up,
or example driven approach based on Plotkin’s framework
of relative least general generalisation (rlgg) (Plotkin 1971).
This avoids searching a large hypothesis space for consis-
tent hypothesis as, e.g, FFOIL, but rather constructs a unique
clause covering a subset of the provided examples relative to
the given background knowledge. However, such a search
space explodes and makes search nearly intractable.

Therefore, to generate a single clause, GOLEM first ran-
domly picks pairs of positive examples, computes their rlggs
and chooses the one with the highest coverage, i.e., with the
greatest number of positive examples covered. By randomly
choosing additional examples and computing the rlgg of the
clause and the new example, the clause is further gener-
alised. This generalisation is repeated using the clause with
the highest coverage until generalisation does not yield a
higher coverage. To generate further clauses GOLEM uses
the sequential covering approach. The preference bias is
defined as the clause covering most of the positive and no
negative examples in a lattice over clauses constructed by
computing the rlggs of two examples.

MAGICHASKELLER (Katayama 2005) is a comparable
new search-based synthesiser which generates HASKELL
programs. Exploiting type-constraints, it searches the space
of λ-expressions for the smallest program satisfying the
user’s specification. The expressions are created from user
provided functions and data-type constructors via func-
tion composition, function application, and λ-abstraction
(anonymous functions). The system’s preference bias can be
characterised as a breadth-first search over the length of the
candidate programs guided by the type of the target function.

Therefore it prefers the smallest program constructable from
the provided functions that satisfies the user’s constraints.

IGOR I is a modern extension of the seminal THESYS sys-
tem (Summers 1977) adopting its two-step approach. In a
first step I/O examples are rewritten to traces which explain
each output given the respective input based on a datatype
theory. All traces are integrated into one conditional expres-
sion computing exactly the output for the inputs as given in
the examples as a non-recursive program. In a second step,
this initial program is generalised into recursive equations
by searching for syntactic regularities in this term.

Synthesis is still restricted to structural problems, where
only the structure of the arguments matters, but not their
contents, such as in list reversing (and contrary to member).
Nevertheless, the scope of synthesisable programs is con-
siderably larger. For instance, tree-recursive functions and
functions with hidden parameters can be induced. Most no-
tably, programs consisting of a calling function and an arbi-
trary set of further recursive functions can be induced.

IGOR II is, contrarily to others, specialised to learn recur-
sive programs. To do this reliably, partitioning of input ex-
amples, i.e., the introduction of patterns and predicates, and
the synthesis of expressions computing the specified out-
puts, are strictly separated. Partitioning is done systemati-
cally and completely instead of randomly (GOLEM) or by
a greedy search (FFOIL). All subsets of a partition are cre-
ated in parallel, i.e., IGOR II follows a “simultaneous” cov-
ering approach. Also the search for expressions is complete,
still remaining tractable even for relative complex programs
because construction of hypotheses is data-driven. IGOR II
combines analytical program synthesis with search.

Fewer case distinctions, most specific patterns, and fewer
recursive calls or calls to background functions are pre-
ferred. Thus, the initial hypothesis is a single rule per tar-
get function. Initial rules are least general generalisations
(lggs) (Plotkin 1971) of the example equations, i.e., patterns
are lggs of the example inputs, rhss are lggs of the outputs
w.r.t. the substitutions for the pattern, and conditions are
empty. Successor hypotheses have to be computed, if un-
bound variables occur in rhss. Three ways of getting suc-
cessor hypotheses are applied: (1) Partitioning of the inputs
by replacing one pattern by a set of disjoint more specific
patterns or by adding a predicate to the condition. (2) Re-
placing the rhs by a (recursive) call of a defined function,
where finding the argument of the function call is treated as
a new induction problem. (3) Replacing the rhs subterms
in which unbound variables occur by a call to new subpro-
grams. In cases (2) and (3) auxiliary functions are invented,
abducing I/O-examples for them.

Forecast As far as one can generally already say, the “old”
systems GOLEM and FFOIL are hampered by their greedy
sequential covering strategy. Consequently, partial rules are
never revised and lead to local optima, and thus losing de-
pendencies between rules. This is especially the case with
FFOIL learning predicates or finding a separate rule for the

AGI-2009 - Published by Atlantis Press, © the authors
 <4>

Table 2: Overview of systems’ restriction bias
F (i1, . . . , in)/lhs rhs vi/ui

ADATE ii ∈ XT TC(XT) ilc

FLIP CRG of E+ inverse narrowing of CRG of E+ —
FFOIL ii ∈ XT TC(XT) ∪ {true, false} il

GOLEM ii ∈ TC(XT) TC(XT) ∪ {true, false} ilc

IGOR I ii ∈ TC(XT) TC(XT) —
IGOR II ii ∈ TC(XT) TC(XT) i

MAGH. composition of functions from BK, higher-order via paramorphisms

i if l let c case

base case, where the foil gain may be misleading. FFOIL is
heavily biased towards constructing the next clause to cover
the most frequent function value in the remaining tuples.

Where FFOIL has only very general lhss, GOLEM and
FLIP try to be more flexible in discriminating the inputs
there, but not effective enough. Random sampling is too un-
reliable for an optimal partition of the inputs, especially for
more complex data structures or programs with many rules.

FLIP generates the lhss using the CRG on basis of com-
mon subterms on the lhs and rhs of the examples. Neces-
sary function-carrying subterms on both sides may be gen-
eralised and the lhss may tend to be overly general. Also,
neither overlap of the lhss is prohibited, nor are the rules or-
dered. Consequently, one input may be matched by several
rules resulting in a wrong output. The rhs are constructed
via inverse narrowing inducing a huge search space, so with
increasing complexity of examples the search becomes more
and more intractable when relying solely on heuristics.

MAGICHASKELLER is a promising example of including
higher-order features into IP and shows how functions like
map or filter can be applied effectively, when used advis-
edly, as some kind of program pattern or scheme. Never-
theless, MAGICHASKELLER and ADATE exhibits the usual
pros and cons common to all search-based approaches: The
more extensive the BK library, the more powerfull the syn-
thesised programs are, the greater is the search space and
the longer are the runs. However, contrarily to GOLEM, it is
not mislead by partial solutions and shows again that only a
complete search can be satisfactory for IP.

IGOR I and IGOR II will have problems were many exam-
ples are required (mult/add & allodds), but will be in other
respects very fast.

Empirical Results
As problems we have chosen some of those occurring in the
accordant papers and some to bring out the specific strengths
and weaknesses. They have the usual semantics on lists:
multlast replaces all elements with the last and shiftr makes
a right-shift of all elements in a list. Therefore it is neces-
sary to access the last element for further computations. Fur-
ther functions are lasts which applies last on a list of lists,
isort which is insertion-sort, allodds checks for odd num-
bers, and weave alternates elements from two lists into one.
For odd/even and mult/add both functions need to be learnt
at once. The functions in odd/even are mutually recursive
and need more than two rules, lasts, multlast, isort, reverse,

Table 3: Systems’ runtimes on different problems in seconds

Problems Systems

A
D

A
T

E

F
F

O
IL

F
L

IP

G
O

L
E

M

IG
O

R
I

IG
O

R
II

M
A

G
H

.

lasts 365.62 0.7⊥ × 1.062 0.051 5.695 19.43

last 1.0 0.1 0.020 < 0.001 0.005 0.007 0.01

member 2.11 0.1⊥ 17.868 0.033 — 0.152 1.07

odd/even — < 0.1⊥ 0.130 — — 0.019 —
multlast 5.69 < 0.1 448.900⊥ < 0.001 0.331 0.023 0.30

isort 83.41 × × 0.714 — 0.105 0.01

reverse 30.24 — — — 0.324 0.103 0.08

weave 27.11 0.2 134.240⊥ 0.266 0.001⊥ 0.022 �
shiftr 20.14 < 0.1⊥ 448.550⊥ 0.298 0.041 0.127 157.32

mult/add — 8.1⊥ × — — � —
allodds 466.86 0.1⊥ × 0.016⊥ 0.015⊥ � ×

— not tested × stack overflow � time out ⊥ wrong

mult/add, allodds suggest to use function invention, but only
reverse is explicitly only solvable with. lasts and allodds
also split up in more than two rules if no function invention
is applied. To solve member pattern matching is required,
because equality is not provided. The function weave is es-
pecially interesting, because it demands either for iterating
over more than one argument resulting in more than one base
case, or swapping the arguments at each recursive call.

Because FFOIL and GOLEM usually perform better with
more examples, whereas FLIP, MAGICHASKELLER and
IGOR II do better with less, each system got as much ex-
amples as necessary up to certain complexity, but then ex-
haustively, so no specific cherry-picking was allowed.

For synthesising isort all systems had a function to in-
sert into a sorted list, and the predicate < as background
knowledge. FLIP needed an additional function if to re-
late the insert function with the <. For all systems except
FLIP and MAGICHASKELLER the definition of the back-
ground knowledge was extensional. IGOR II was allowed
to use variables and for GOLEM additionally the accordant
negative examples were provided. MAGICHASKELLER had
paramorphic functions to iterate over a data type in BK.
Note that we did not test a system with a problem which it
per se cannot solve due to its restriction bias. This is in-
dicated with ‘—’ instead of a runtime. A timeout after ten
minutes is indicated with �. Table 3 shows the runtimes of
the different systems on the example problems.

All tests have been conducted under Ubuntu 7.10 on
a Intel Dual Core 2.33 GHz with 4GB memory. Fol-
lowing versions have been used: FLIP v0.7, FFOIL 1.0,
GOLEM version of August 1992, the latest version of IGOR I,
IGOR II version 2.2, ADATE version 0.50 and MAGIC-
HASKELLER 0.8.3-1. The input files can be obtained
under http://www.cogsys.wiai.uni-bamberg.
de/effalip/download.html.

As the empirical results affirm the previous considera-
tions, FFOIL fails with nearly all problems, and multlast
was only solved with more examples. This can easily be
explained with the greedy foil gain and a sequential cover-

AGI-2009 - Published by Atlantis Press, © the authors
 <5>

ing strategy. Due to GOLEM’s random sampling, the best
result of ten runs have been chosen.

Long run times and the failures of FLIP testify for the in-
tractable search space induced by the inverse narrowing op-
erator. Wrong programs are due to overlapping lhss and its
generalisation strategy of the inputs. Despite its randomisa-
tion, GOLEM overtrumps FLIP due to its capability of intro-
ducing let-expressions (cf. multlast). IGOR I and IGOR II
need function invention to balance this weak-point.

On reverse and isort MAGICHASKELLER demonstrates
the power of higher-order functions. Although it does
not invent auxiliary functions, reverse was solved using its
paramorphism over lists which provides some kind of ac-
cumulator. The paramorphisms are also the reason why
MAGICHASKELLER fails with weave, since swapping the
inputs with each recursive call does not fit in the schema
induced by the paramorphism for lists.

These results showed, that the field of IP is not yet fully
researched, and there are improvements discovered since the
“golden times” of ILP and still to be discovered. Basically,
ILP systems need a vast number of I/O examples which is
usually impractical for a normal user to provide. Contrar-
ily, IFP systems get along with much less examples but are
still much more reliable in their results than ILP systems.
Among the IFP it is significant analytic approaches rule out
ADATE or MAGICHASKELLER on more complex problems
where the search space increases. Also the ability of generi-
cally inventing functions is a big advantage.

Conclusions and Further Work
Based on a uniform description of some well-known IP sys-
tems and as result of our empirical evaluation of IP systems
on a set of representative sample problems, we could show
that the analytical approach of IGOR II is highly promising.
IGOR II can induce a large scope of recursive programs, in-
cluding mutual recursion using a straight-forward technique
for function invention. Background knowledge can be pro-
vided in a natural way. As consequence of IGOR II’s general-
isation principle, induced programs are guaranteed to termi-
nate and to be the least generalisations. Although construc-
tion of hypotheses is not restricted by some greedy heuris-
tics, induction is highly time efficient. Furthermore, IGOR II
works with minimal information provided by the user. It
needs only a small set of positive I/O examples together with
the data type specification of the target function and no fur-
ther information such as schemes.

Due to the nature of specification by example, IP systems
in general, cannot scale up to complex software develop-
ment problems. However, integrating IP principles in the
software engineering process might relieve developers from
specifying or coding specific functions. Although IGOR II
cannot tackle problems of complex size, it can tackle prob-
lems which are intellectually complex and therefore might
offer support to inexperienced programmers.

Function invention for the outmost function without prior
definition of the positions of recursive calls will be our great-
est future challenge. Furthermore, we plan to include the
introduction of let-expressions and higher-order functions
(such as map, reduce, filter).

References
Baader, F., and Nipkow, T. 1998. Term Rewriting and All
That. United Kingdom: Cambridge University Press.
Biermann, A. W.; Kodratoff, Y.; and Guiho, G. 1984. Auto-
matic Program Construction Techniques. NY, Free Press.
Flener, P., and Yilmaz, S. 1999. Inductive synthesis of
recursive logic programs: Achievements and prospects. J.
Log. Program. 41(2-3):141–195.
Flener, P. 1996. Inductive logic program synthesis with Di-
alogs. In Muggleton, S., ed., Proc. of the 6th International
Workshop on ILP, 28–51. Stockholm University
Hernández-Orallo, J., and Ramı́rez-Quintana, M. J. 1998.
Inverse narrowing for the induction of functional logic pro-
grams. In Freire-Nistal, et al., eds., Joint Conference on
Declarative Programming, 379–392.
Hofmann, M.; Kitzelmann, E.; and Schmid, U. 2008. Anal-
ysis and evaluation of inductive programming systems in a
higher-order framework. In 31st German Conference on
Artificial Intelligence, LNAI. Springer-Verlag.
Hofmann, M. 2007. Automatic Construction of XSL Tem-
plates – An Inductive Programming Approach. VDM Ver-
lag, Saarbrücken.
Katayama, S. 2005. Systematic search for lambda expres-
sions. In Trends in Functional Programming, 111–126.
Kitzelmann, E., and Schmid, U. 2006. Inductive synthesis
of functional programs: An explanation based generaliza-
tion approach. J. of ML Research 7:429–454.
Kitzelmann, E. 2007. Data-driven induction of recur-
sive functions from input/output-examples. In Kitzelmann,
E., and Schmid, U., eds., Proc. of the ECML/PKDD 2007
Workshop on Approaches and Applications of Inductive
Programming, 15–26.
Mitchell, T. M. 1997. Machine Learning. McGraw-Hill
Higher Education.
Muggleton, S., and Feng, C. 1990. Efficient induction of
logic programs. In Proc. of the 1st Conference on Algorith-
mic Learning Theory, 368–381. Ohmsma, Tokyo, Japan.
Muggleton, S. 1995. Inverse entailment and Progol. New
Generation Computing, Special issue on Inductive Logic
Programming 13(3-4):245–286.
Olsson, R. J. 1995. Inductive functional programming us-
ing incremental program transformation. Artificial Intelli-
gence 74(1):55–83.
Plotkin, G. 1971. A further note on inductive generaliza-
tion. In Machine Intelligence, vol. 6. Edinb. Univ. Press.
Quinlan, J. R., and Cameron-Jones, R. M. 1993. FOIL: A
midterm report. In Machine Learning: ECML-93, Proc.,
vol. 667, 3–20. Springer-Verlag.
Quinlan, J. R. 1996. Learning first-order definitions of
functions. Journal of AI Research 5:139–161.
Summers, P. D. 1977. A methodology for LISP program
construction from examples. Journal ACM 24:162–175.
Terese. 2003. Term Rewriting Systems, vol. 55 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge
University Press.

AGI-2009 - Published by Atlantis Press, © the authors
 <6>

