Countable compactness in generalized L-topological spaces

Shi-Zhong Bai¹,a, Yi Shi¹,b
¹School of Mathematics and Computational Science, Wuyi University, Guangdong, China
a shizhongbai@aliyun.com, b symathematics@163.com

Abstract.

In this paper, the generalized countable L-compact sets and generalized Lindelöf sets are introduced in generalized L-topological spaces, based on the notion of generalized L-compactness. They are described by cover form and finite intersection property. They are preserved under generalized L-continuous mapping, inherited for L-closed subsets, and finitely additive. And an L-subset is generalized L-compact if and only if it is generalized Lindelöf and generalized countably L-compact.

Keywords: generalized L-topology, generalized countable L-compactness, generalized Lindelöf set

1. Introduction and Preliminaries

In [2], Bai introduced the concept of generalized L-topological spaces, and studied the basic concepts and basic properties in generalized L-topological spaces. Following the lines of [2], in [3], Bai introduced generalized L-compactness. In this paper, our aim is to continue the research of generalized countable L-compact sets and generalized Lindelöf sets in generalized L-topological spaces.

Throughout this paper, $(L, \lor, \land, ')$ is a completely distributive De Morgan algebra and X is a nonempty set. L^X is the set of all L-fuzzy sets on X. The smallest element and the largest element of L^X will be denoted by 0 and 1 respectively. The set of non-unit prime elements[4] in L is denoted by $pr(L)$. The set of nonzero co-prime elements[4] in L and L^X is denoted by
\[M(L) \] and \[M^*(L) \] respectively. Clearly, \(r \in pr(L) \) if and only if \(r' \in M(L) \). The greatest minimal family of \(a \) in \(L \) is denoted by \(\beta(a) \). The greatest maximal family of \(a \) in \(L \) is denoted by \(\alpha(a) \) [5,8]. Moreover for \(a \) in \(L \), define \(\beta^*(a) = \beta(a) \cap M(L) \) and \(\alpha^*(a) = \alpha(a) \cap pr(L) \). For each \(\psi \subseteq L \), we define \(\psi' = \{ A' : A \in \psi \} \). For \(r \in L \), \(\mathcal{E}_r(A) = \{ x \in X : A(x) \geq r \} \).

Definition 1.1.[2]. Let \(L \) be a completely distributive De Morgan algebra, \(X \) be a nonempty set and \(\delta \) be a collection of subsets of \(L^X \). Then \(\delta \) is called a generalized L-topology (briefly GL-t) on \(X \) if \(\emptyset \in \delta \) and \(G_i \in \delta \) for \(i \in I \neq \emptyset \) implies \(G = \bigvee_{i \in I} G_i \in \delta \). We call the pair \((L^X, \delta) \) a generalized L-topological space (briefly GL-ts) on \(X \). The element of \(\delta \) are called generalized L-open sets (briefly GL-open sets) and the complements are called generalized L-closed sets (briefly GL-closed sets). We say \(\delta \) is strong if \(1 \in \delta \).

Definition 1.2.[6]. Each mapping \(f : X \to Y \) induces a mapping \(f_L^{-} : X \to Y \) (called an L-valued Zadeh function or an L-fuzzy mapping or an L-forward power set operator), which is defined by \(f_L^{-}(A) = \bigvee \{ A(x) \mid f(x) = y \} \quad (\forall A \in L^X, y \in Y) \). The right adjoint to \(f_L^{-} \) (called L-backward power set operator) is denoted \(f_L^{+} \) and given by \(f_L^{+}(B) = \bigvee \{ A \in L^X \mid f_L^{-}(A) \leq B \} = B \circ f \quad (\forall B \in L^X) \).

Definition 1.3.[2]. Let \((L^X, \delta) \) and \((L^Y, \tau) \) be two GL-ts’s and \(f^{-} : L^X \to L^Y \) an L-fuzzy mapping. \(f^{-} \) is called a generalized L-continuous mapping (briefly GL-continuous mapping) if \(f^{-}(B) \in \delta \) for each \(B \in \tau \).

Definition 1.4.[2]. Let \((L^X, \delta) \) be a GL-ts and \(x_A \in M^*(L^X) \). \(A \in \delta' \) is
called a generalized L-closed remote-neighborhood (briefly GLC-RN) of x_λ, if $x_\lambda \leq A$. $B \in L^X$ is called a generalized L-remote-neighborhood (briefly GL-RN) of x_λ if there is a GLC-RN A of x_λ such that $B \leq A$. The set of all GLC-RNs(GL-RNs) of x_λ is denoted by $\eta^{-}(x_\lambda)$ ($\eta(x_\lambda)$).

Definition 1.5[2]. Let (δ, L^X) be a GL-ts, $A \in L^X$ and $\alpha \in M(L)$. $\phi \subset \delta'$ is called an α-closed -remote neighborhood family of A (briefly α-C-RF of A) if for each x_α in A, there exists a $P \in \phi$ such that $P \in \eta(x_\alpha)$. ϕ is called an α^{-}-C-RF of A.

Definition 1.6[2]. Let (δ, L^X) be a GL-ts and $A \in L^X$. A is called generalized L-compact (briefly GL-compact) if every α-C-RF ϕ of A has a finite subfamily which is an α^{-}-C-RF of A. (δ, L^X) is called GL-compact if 1_X is GL-compact.

2. Generalized countable L-compactness

Definition 2.1. Let (L^X, δ) be a GL-ts and $A \in L^X$. A is called generalized countably L-compact if every countable α-C-RF ϕ of A has a finite subfamily which is an α^{-}-C-RF of A. $(\alpha \in M(L))$. (L^X, δ) is called generalized countably L-compact if 1_X is generalized countably L-compact.

From the Definitions 2.1 and 1.6 we immediately obtain the following results.

Corollary 2.2. Every generalized L-compact set is generalized countably L-compact.

Definition 2.3. Let (L^X, δ) be a GL-ts, $A \in L^X$ and $r \in pr(L)$. $\mu \subset \delta$ is called an r-cover of A if for each $x \in \varepsilon_r(A)$, there exists an $U \in \mu$ such that $U(x) \leq r$. μ is called an r^{-}-cover of A if there exists a $t \in \alpha^*(r)$ such that μ is a t-cover of A.

Theorem 2.4. Let (L^X, δ) be a GL-ts and $r \in pr(L)$. $A \in L^X$ is generalized countably L-compact if and only if every countable r-cover μ of A has a finite subfamily ν which is an r^{-}-cover of A.

1625
Proof. Let A be generalized countably L-compact, μ a countable r-cover of A and $r \in pr(L)$. Put $\phi = \mu'$, then $\phi \subset \delta'$ and for each $x \in \varepsilon_r(A)$ there exists a $Q = U' \in \phi$ such that $U(x) \leq r$, i.e., $r' \leq Q(x)$.

Since $r \in pr(L)$, $r' \in M(L)$. By $x_r \leq Q \not\equiv \emptyset$ have $Q \in \eta(x_r)$, hence ϕ is a countable r'-C-RF of A. Since A is generalized countably L-compact, there is a finite subfamily ν of μ such that $\nu = \nu'$ is an $(r')^-$-C-RF of A, i.e., for some $t \in \beta^*(r')$ and each $x \in \varepsilon_r(A)$, there is a $\nu'(x) \in \nu$ such that $t \leq \nu'(x)$, equivalently, for some $t' \in \alpha'(r)$ and each $x \not\in \varepsilon_r(A)$, there is a $\nu'(x) \in \nu$ such that $V(x) \leq t'$. Thus μ has a finite subfamily ν which is an r^+-cover of A.

Conversely, suppose every countable r-cover μ of A has a finite subfamily is an r^+-cover of A. Let ϕ be a countable α-C-RF of A, $\mu = \phi'$ and $r = \alpha'$. Since $\alpha \in M(L)$, $r \in pr(L)$. With the method of dual above, it is easily to prove that μ is a countable r-cover of A. Suppose ψ is a finite subfamily of μ such that ψ is an r^+-cover of A. Put $\psi = \nu'$, then ψ is an α^--C-RF of A. Thus A is generalized countably L-compact.

Definition 2.5. Let (L^X, δ) be a GL-ts, $A \in L^X$, $r \in pr(L)$ and $\mu \subset L^X$. If for every finite subfamily ν of μ and for each $t \in \alpha^*(r)$, there is an $x \in \varepsilon_r(A)$ such that $\nu(x) \geq t'$, then we say that μ has an r^+-finite intersection property in A.

Theorem 2.6. Let (L^X, δ) be a GL-ts and $r \in pr(L)$. $A \in L^X$ is generalized countably L-compact if and only if every countable subfamily of GL-closed sets μ has an r^+-finite intersection property in A and there is an $x \in \varepsilon_r(A)$ such that $(\wedge \nu)(x) \geq r'$.

Proof. Let A be generalized countably L-compact. Suppose there is a prime element $e \in pr(L)$ and some countable subfamily of GL-closed sets μ has an e^+-finite intersection property in A for each $x \in \varepsilon_r(A)$ such that $(\wedge \mu)(x) \geq e'$. Then there exists a $B \in \mu$ such that $B(x) \geq e'$, i.e., $B'(x) \leq e$. This
shows μ' is a countable e-cover of A. By the Theorem 2.4, there is a finite subfamily $\nu = \{B_1, \cdots, B_n\}$ of μ such that ν' is an e^+-cover of A. Hence for some $t \in \alpha^+(e)$ and each $x \in \mathcal{C}_e(A)$, there is a $B_i \in \nu$

such that $B_i'(x) \leq t$. And so $(\vee_{i=1}^n B_i')(x) \leq t$, i.e. $(\forall \nu)(x) = (\vee_{i=1}^n B_i)(x) \geq t'$, which contradicts that μ has an e^+-finite intersection property in A.

Conversely, let μ be a countable r-cover of A and $r \in pr(L)$. If none of the finite subfamily ν of μ is r^+-cover of A, then every $t \in \alpha^+(r)$ there is an $x \in \mathcal{C}_e(A)$ such that $C(x) \leq t$ for each $C \in \nu$. And so $(\forall \nu)(x) \leq t$, equivalently, $(\forall \nu')(x) \geq t'$. This shows that subfamily of GL-closed sets μ' having an r^+-finite intersection property in A. Hence there is an $x \in \mathcal{C}_e(A)$ such that $(\vee \mu)(x) \geq r'$, i.e. $(\forall \mu)(x) \leq r$. This implies that μ is not a countable r-cover of A, a contradiction. By the Theorem 2.4, A is generalized countably L-compact.

Theorem 2.7. Let (L^X, δ) be a GL-ts and $A, B \in L^X$. If A is generalized countably L-compact and $B \in \delta'$, then $A \land B$ is generalized countably L-compact.

Proof. Let $\phi \subset \delta'$ be a countable α-C-RF of $A \land B$ ($\alpha \in M(L)$). Then $\phi_1 = \phi \cup \{B\}$ is a countable α-C-RF of A. In fact, for each $x_\alpha \in B$ then $x_\alpha \in A \land B$. Hence, there is $P \in \phi \subset \phi_1$ such that $P \in \eta(x_\alpha)$. If $x_\alpha \notin B$, then $B \in \phi$ and $B \in \eta(x_\alpha)$. Thus, ϕ_1 is indeed a countable α-C-RF of A. Since A is generalized countably L-compact, there exists an $r \in f^B(\alpha)$ and finite subfamily ψ_1 of ϕ_1 such that ψ_1 is an r-C-RF of A. Let $\delta = \psi_1 - \{B\}$, then δ is a finite subfamily of ϕ and ψ is an r-C-RF of $A \land B$. In fact, $x_\alpha \in A \land B$, then $x_\alpha \in A$, from the definition of ψ_1, there is $P \in \psi_1$, with $P \in \eta_1(x_\alpha)$. But $x_\alpha \in B$, so $P \neq B$, and thus $P \in \psi_1 - \{B\} = \psi$. Hence, $A \land B$ is generalized countably L-compact.

Theorem 2.8. If A and B are generalized countably L-compact in GL-ts
Theorem 2.9. Let \((L^X, \delta) \) and \((L^Y, \tau) \) be two GL-ts's, \(f : L^X \to L^Y \) a GL-continuous mapping and \(A \) a generalized countable L-compact set in \((L^X, \delta) \). Then \(f^{-\top}(A) \) is generalized countable L-compact in \((L^Y, \tau) \).

Proof. Let \(\phi \subseteq \tau' \) be a countable \(\alpha \)-C-RF of \(f^{-\top}(A) \) and \(x_\alpha \in A(\alpha \in M(L)) \). To begin with, let us show that \(f^{\top-}(\phi) = \{f^{\top-}(P) : P \in \phi\} \) a countable \(\alpha \)-C-RF of \(A \). Since \(f^{\top-} \) is GL-continuous and \(x_\alpha \in A \), \(f^{\top-}(\phi) \subseteq \delta' \) and \(f^{\top-}(x_\alpha) = (f^{\top-}(x))_\alpha \leq f^{\top-}(A) \). By \(\phi \) is a countable \(\alpha \)-C-RF of \(f^{\top-}(A) \), there is a \(P \in \phi \) with \(P \in \eta((f^{\top-}(x))_\alpha) \), i.e. \((f^{\top-}(x))_\alpha \leq P \) or, equivalently, \(P(f^{\top-}(x)) \geq \alpha \).

By the definition of inverse mapping, \(f^{\top-}(P)(x) = P(f^{\top-}(x)) \geq \alpha \) hence \(x_\alpha \notin f^{\top-}(P) \), i.e. \(f^{\top-}(P) \in \eta(x_\alpha) \).

Therefore \(f^{\top-}(\phi) \) is a countable \(\alpha \)-C-RF of \(A \).

Since \(A \) is generalized countably L-compact, there exists an \(r \in \beta^*(\alpha) \) and a finite subfamily \(\psi \) of \(\phi \) such that \(f^{\top-}(\psi) \) is an \(r \)-C-RF of \(A \). Again, by the generalized countable L-compactness of \(A \), there exists an \(r_1 \in \beta^*(r) \) and a finite subset \(\psi_1 \) of \(f^{\top-}(\psi) \) such that \(\psi_1 \) is an \(r_1 \)-C-RF of \(A \). Obviously we can take \(\psi_1 = f^{\top-}(\psi) \).

Now we will show that \(\psi \) is an \(r \)-C-RF of \(f^{\top-}(A) \). Let \(y_r \leq f^{\top-}(A) \), by the Lemma 4.10 [8], \(r = \sup \{\lambda \in L : \exists x \in f^{\top-}(y), A(x) \geq \lambda \text{ and } \lambda \leq r\} \). Since \(r_1 \in \beta^*(r) \), we have \(r_1 \in \beta(r) \) and hence there is an \(\lambda \in L \) and \(x \leq f^{\top-}(y) \) with \(A(x) \geq \lambda \), \(\lambda \leq r \), and \(\lambda \geq r_1 \); thus \(x_\lambda \leq A \). It follows from \(f^{\top-}(\psi) \) is an \(r \)-C-RF of \(A \) that there is a \(P \in \psi \) with \(f^{\top-}(P) \in \eta(x_\lambda) \), i.e. \(f^{\top-}(P)(x) \geq r_1 \). Hence \(P(y) = P(f^{\top-}(x)) \geq r_1 \) and therefore certainly \(P(y) \geq r \), i.e. \(P \in \eta(y_r) \). Thus \(f^{\top-}(A) \) is generalized countably GL-compact.
Corollary 2.10. Let \((L^X, \delta)\) be a countable L-compact space and \(f : (L^X, \delta) \rightarrow (L^Y, \tau)\) a surjective GL-continuous mapping. Then \((L^Y, \tau)\) is generalized countably L-compact.

3. Generalized Lindelöf sets

Definition 3.1. Let \((L^X, \delta)\) be a GL-ts and \(A \in L^X\). \(A\) is called generalized Lindelöf sets if every \(\alpha\)-C-RF \(\phi\) of \(A\) has a countable subfamily which is an \(\alpha^-\)-C-RF \(\phi\) of \(A\) \((\alpha \in M(L))\). \((L^X, \delta)\) is called generalized Lindelöf space if \(1_X\) is generalized Lindelöf.

From the Definitions 3.1 and 2.6 we immediately obtain the following results.

Theorem 3.2. Let \((L^X, \delta)\) be a GL-ts and \(A \in L^X\). Then \(A\) is generalized L-compact set if and only if \(A\) is generalized Lindelöf and generalized countably L-compact.

Analogous to generalized countable L-compactness, we have the following results.

Theorem 3.3. Let \((L^X, \delta)\) be a GL-ts and \(r \in pr(L)\). Then \(A\) is generalized Lindelöf set if and only if every \(r\)-cover \(\mu\) of \(A\) has a countable subfamily \(\nu\) which is an \(r^-\)-cover of \(A\).

Theorem 3.4. Let \((L^X, \delta)\) be a GL-ts and \(A, B \in L^X\). If \(A\) is generalized Lindelöf set and \(B \in \delta'\), then \(A \land B\) is generalized Lindelöf.

Theorem 3.5. If \(A\) and \(B\) is generalized Lindelöf sets in GL-ts \((L^X, \delta)\), then \(A \lor B\) is generalized Lindelöf.

Theorem 3.6. Let \((L^X, \delta)\) and \((L^Y, \tau)\) be two GL-ts’s, \(f : L^X \rightarrow L^Y\) a GL-continuous mapping and \(A\) a generalized Lindelöf set in \((L^X, \delta)\). Then \(f^{-1}(A)\) is generalized Lindelöf in \((L^Y, \tau)\).
Corollary 3.7. Let \((L^X, \delta)\) and \((L^Y, \tau)\) be a generalized Lindelöf set and \(f : (L^X, \delta) \to (L^Y, \tau)\) a surjective GL-continuous mapping. Then \((L^Y, \tau)\) is generalized Lindelöf.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 11471202), the Natural Science Foundation of Guangdong Province (No.S2012010008833).

References

