A New Theorem on Bargaining Sets in TU Games

Wenbo Yang1, a, Jiuqiang Liu2, b

1Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang, 471023, China

2Department of Mathematics, Eastern Michigan University, Ypsilanti, MI 48197, USA

aemail: ywb1029@163.com, bemail: jliu@163.com

Keywords: Soccer Robot; Mechanical Analysis; Optimal Design

Abstract. In this paper, we provide a new existence theorem by proving that Mas-Colell bargaining sets exist for all TU games.

Introduction

Let \(N = \{1, 2, \ldots, n\} \) be the set of \(n \) players. Any subset of \(N \) is called a coalition.

Definition 1.1. A cooperative game (or a TU game) in characteristic function form with player set \(N \) is a map \(\nu : 2^N \rightarrow \mathbb{R} \) with the property \(\nu(\emptyset) = 0 \).

A payoff vector \(x \in \mathbb{R}^n \) is said to be individual rational if \(x_i \geq \nu(\{i\}) \) for each \(i \in N \).

Definition 1.2. The imputation set \(I(\nu) \) of a cooperative game \(\nu \) is the set

\[
I(\nu) = \left\{ x \in \mathbb{R}^n \mid \sum_{i \in N} x_i = \nu(N), x_i \geq \nu(\{i\}) \text{ for each } i \in N \right\}.
\]

Cooperative games have been studied extensively in the literature. A central question in cooperative games is to study solution concepts and their relationships, those well-known solution concepts include cores, stable sets, Shapley values, bargaining sets, and so on.

To state Vohra’s result formally, let us recall some necessary concepts from [4].

A non-transferable utility game (NTU game) in characteristic function form is defined as a pair \((N, V)\), where \(V : 2^N \rightarrow \mathbb{R}^N \) is a correspondence satisfying

(i) for all non-empty \(S \in 2^N \), \(V(S) \) is non-empty, closed, and comprehensive,
(ii) for all \(i \in N \), \(V(\{i\}) = \left\{ x \in \mathbb{R}^N \mid x_i \leq 0 \right\} \),
(iii) for all \(S \in 2^N \), \(V(S)_j \cap \mathbb{R}_j \) is bounded.

A TU game \(\nu \) in characteristic function form is equivalent to an NTU game \((N, V)\) such that for every non-empty \(S \in 2^N \),

\[
V(S) = \left\{ x \in \mathbb{R}^N \mid \sum_{i \in S} x_i \leq \nu(S) \right\}. \quad (1.1)
\]

In fact, Condition (ii) in the definition above by Vohra also requires \(\nu(\{i\}) = 0 \) for all \(i \in N \), which can be achieved by zero normalization.

Weak Superadditivity (version 1): For any \(S \in 2^N \) and \(i \notin S \), if \(x \in V(S) \), then \(y \in V(S \cup \{i\}) \), where \(y_i = 0 \) and \(y_j = x_j \) for \(j \neq i \).

This has the following equivalent form given in [2].

Weak Superadditivity (version 2): An NTU game \((N, V)\) is weakly superadditive if for every \(i \in N \) and every \(S \subseteq N \setminus \{i\} \) satisfying \(S \neq \emptyset \), \(V(S) \times V(\{i\}) \subseteq V(S \cup \{i\}) \).

Clearly, for TU games, the weak superadditivity is equivalent to the following according to version 2 and (1.1).
Weak Superadditivity for TU games: \(\nu(S) + \nu(\{i\}) \leq \nu(S \cup \{i\}) \) for each \(S \subseteq N \) and each \(i \in N \setminus S \).

Theorem 1.3 (Vohra, 1991). If \(\nu \) is a weakly superadditive TU game, then the Mas-Colell bargaining set \(MB(\nu) \) of \(\nu \) is non-empty.

In this paper, we prove the following stronger existence theorem for Mas-Colell bargaining sets in TU games.

Theorem 1.4. If \(\nu \) is a TU game such that \(\nu(S) \leq \nu(N) \) for each \(S \subseteq N \), then the Mas-Colell bargaining set \(MB(\nu) \) of \(\nu \) is non-empty.

Lemma 1.7. Let \(\nu \) be a TU game and let \(\nu_0 \) be the zero-normalized game of \(\nu \). Then \(x \in MB(\nu) \) if and only if \(x' \in MB(\nu_0) \), where \(x'_i = x_i - \nu(i) \) for each \(i \in N \).

Proof of Theorem 1.4

In this section, we will give a proof for Theorem 1.4 by proving the following Theorem 2.2 which implies Theorem 1.4. Our proof is motivated in part by the ideas from [4] and [5]. Let \(\nu \) be a TU game. For an imputation \(x \in I(\nu) \) and a coalition \(S \subseteq N \), the excess of \(S \) at \(x \) is

\[
e(S,x) = \nu(S) - \sum_{i \in S} x_i
\]

Clearly, we have following remark from the definitions.

Remark 2.1. An objection \((S,y)\) at \(x \) exists if and only if \(e(S,x) > 0 \).

Next, for the purpose of overcoming difficulties in our proof for Theorem 1.4, we introduce strong counterobjection as follows, where the special conditions imposed on strong counterobjection is just a technical device.

Strong Counterobjection: Given an objection \((S,y)\) at \(x \in I(\nu) \), a strong counterobjection to \((S,y)\) at \(x \) is a pair \((T,z)\), where \(T \) is a coalition such that \(T \setminus S \neq \phi \) and there exists \(h \in S \setminus T \) satisfying \(y_h - x_h = \max \{ y_i - x_i | i \in S \} > 0 \), and \(z \) is a vector in \(R^{|T|} \) satisfying that

\[
z(T) = \sum_{i \in T} z_i = e(T), z_i \geq y_i \text{ for each } i \in S \setminus T, \text{ and } z_i \geq x_i + \sum_{j \in S \setminus T} \frac{y_j - x_j}{|T \setminus S|} \text{ for each } i \in T \setminus S.
\]

An imputation \(x \in I(\nu) \) is said to belong to strong Mas-Colell bargaining set \(MB_s(\nu) \) if for any objection \((S,y)\) at \(x \), there exists a strong counterobjection to it at \(x \).

Theorem 2.2. If \(\nu \) is a TU game such that \(\nu(S) \leq \nu(N) \) for each \(S \subseteq N \), then the strong Mas-Colell bargaining set \(MB_s(\nu) \) of \(\nu \) is non-empty.

Lemma 2.3. Given an objection \((S,y)\) at \(x \) and a non-empty coalition \(T \) such that \(T \setminus S \neq \phi \) and there exists \(h \in S \setminus T \) satisfying \(y_h - y_h = \max \{ y_i - x_i | i \in S \} > 0 \), then a strong counterobjection \((T,z)\) to \((S,y)\) at \(x \) exists if and only if \(e(T,x) \geq e(S,x) \).

Next we introduce the concept of balanced collection and a result from [11] which is needed in our proof.

Let \(\Delta^N \) be the standard simplex:

\[
\Delta^N = \left\{ x \in R^N \left| x_i \geq 0 \text{ for each } i \in N \text{ and } \sum_{i=1}^{n} x_i = 1 \right. \right\}.
\]

Its \(i \)-th face is \(\Delta^N[i] = \{ x \in \Delta^N | x_i = 0 \} \). For each \(S \subseteq N \), denote \(e^S \) the n-dimensional vector
with \(e^S_i = 1 \) if \(i \in S \) and \(e^S_i = 0 \) if \(i \notin S \).

Definition 2.4. A collection \(B \) of non-empty subsets (coalitions) of \(N \) is balanced if there exist positive numbers \(\lambda_S \) for \(S \in B \) such that

\[
\sum_{S \in B} \lambda_S e^S = e^N.
\]

(2.1)

The numbers \(\lambda_S \) are called balancing coefficients.

Clearly, the condition in (2.1) for a balanced collection \(B \) is equivalent to the following.

\[
\sum_{S \in B \cap i \in S} \lambda_S = 1 \quad \text{for each } \ i \in N.
\]

(2.2)

The next theorem is proved by Zhou.

Theorem 2.5 (Zhou, 1994). If \(\{ O_S \}_{S \in N} \) is a family of open sets of \(\Delta^N \) that satisfy

(1) \(\Delta^{N,i} \subseteq O_{\{ i \}} \) for each \(i \in N \) and

(2) \(\bigcup_{S \in N} O_S = \Delta^N \),

then there is a balanced collection \(B \) of non-empty subsets (coalitions) of \(N \) such that \(\bigcap_{S \in B} O_S \neq \phi \).

Let \(\nu \) be a TU game. Note that the core \(C(\nu) \) of \(\nu \) consists of all \(x \in I(\nu) \) such that \(e(S, x) \leq 0 \) for all \(S \subseteq N \). It follows from Remark 2.1 that the core \(C(\nu) \) is a subset of Mas-Colell bargaining set \(MB(\nu) \). Thus, whenever \(\nu \) has a non-empty core, \(MB(\nu) \) is non-empty. This means that, when we deal with the existence of \(MB(\nu) \), we may assume that \(C(\nu) = \phi \), that is, for any \(x \in I(\nu) \), there exists \(S \subseteq N \) such that \(e(S, x) > 0 \). For each \(x \in I(\nu) \), let \(\epsilon_x = \min \{ e(S, x) \mid S \subseteq N \text{ with } e(S, x) > 0 \} \) and set

\[
\epsilon_x = \min \left\{ \frac{1}{n} e_x, \frac{1}{n} \nu(N) \right\}
\]

(2.3)

Then, under the assumption that \(\nu(N) > 0 \) and \(C(\nu) = \phi \), \(\epsilon_x > 0 \) for each \(x \in I(\nu) \).

Let \(\nu \) be a TU game and \(x \in I(\nu) \). We say an objection \((S, y) \) at \(x \) is strongly justified if there is no strong counterobjection to \((S, y) \) at \(x \). For each non-empty \(S \subseteq N \), define \(O_S \) as follows:

\[
O_{\{ i \}} = \{ x \in I(\nu) \mid x_i < \epsilon_x \} \quad \text{for each } \ i \in N,
\]

\[
O_S = \{ x \in I(\nu) \mid \text{there exists a strongly justified objection } (S, y) \text{ at } x \} \quad \text{if } |S| \geq 2.
\]

The following fact follows from the definition immediately.

Fact 2.6. Let \(\nu \) be a TU game with empty core and \(\nu(N) > 0 \). For each \(i \in N \), \(\Delta^{N,i} \subseteq O_{\{ i \}} \).

Lemma 2.7. Let \(\nu \) be a TU game with \(\nu(N) > 0 \). Then, for each non-empty \(S \subseteq N \), \(O_S \) is open.

Lemma 2.8. Let \(\nu \) be a TU game such that \(\nu(N) > 0 \) and \(\nu(S) \leq \nu(N) \) for each \(S \subseteq N \). Then for any balanced collection \(B \) of coalitions, \(\bigcap_{S \in B} O_S = \phi \).

The next lemma allows us to assume \(\nu(N) > 0 \) when dealing with the non-emptiness of strong Mas-Colell bargaining sets.

Lemma 2.9. Let \(\nu \) be a TU game and let \(b > 0 \) be such that \(\nu(N) + b > 0 \). Define \(\nu' \) to be the game such that \(\nu'(S) = \nu(S) + \frac{|S|}{n} b \) for each \(S \subseteq N \). Then \(x \in MB_s(\nu) \) if and only if
We now prove Theorem 1.4 by proving Theorem 2.2.

Proof of Theorem 2.2. Let \(v \) be a TU game such that \(v(S) \leq v(N) \) for all \(S \subseteq N \). In view of Lemma 2.9, we may assume \(v(N) > 0 \). In fact, if \(v(N) \leq 0 \), then let \(b > 0 \) be such that \(v(N) + b > 0 \) and define \(v' \) to be the game such that \(v'(S) = v(S) + \frac{|S|}{n} b \) for each \(S \subseteq N \). Then \(v'(N) = v(N) + b > 0 \) and \(v'(S) \leq v'(N) \) for each \(S \subseteq N \). By Lemma 2.9, \(MB_v \) is non-empty if and only if \(MB_{v'} \) is non-empty. Thus, we may assume \(v(N) > 0 \). If the core \(C(v) \) is non-empty, then we have the strong Mas-Colell bargaining set \(MB_v \) is non-empty. Thus, we may assume that the core \(C(v) \) is empty.

Recall that for each \(x \in I(v) \), \(\sum_{i=1}^{n} x_i = v(N) > 0 \). We map \(Q = I(v) \) onto the standard simplex \(\Delta^N \) by \(f: \)

\[
f: x \rightarrow \frac{x}{\sum_{i=1}^{n} x_i}
\]

Suppose, to the contrary, that the strong Mas-Colell bargaining set \(MB_v \) is empty. Then we have \(Q \setminus U_0 \neq \bigcup_{S \subseteq N} O_S \). This means that \(\Delta^N = f(Q) = U_0 \neq \bigcup_{S \subseteq N} f(O_S) \). By Fact 2.6, \(\Delta^N \subseteq f(O_i) \) for each \(i \in N \). It follows from Theorem 2.5 that there is a balanced collection \(B \) of coalitions such that \(\bigcap_{S \in B} f(O_s) \neq \phi \). But, by Lemma 2.8, we have \(\bigcap_{S \in B} O_S = \phi \). It follows that \(\bigcap_{S \in B} f(O_s) = \phi \), a contradiction. Thus, the theorem holds.

Conclusion

In this paper, we proofed a stronger existence theorem by proving that Mas-Colell bargaining sets exist for all TU games.

References

