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Abstract 

We propose a highly accurate approximate solution for Navier-Stokes Equation (NSE) based on the similarity 
between NSE and Advection Diffusion Equation (ADE). First, we present the analytical exact solution of ADE 
using a Green function (integral kernel) that is obtained from the diffusion equation over uniform flow field (or 
velocity field) in three dimensional (3D) boundless region under arbitrary initial condition. Next, from the explicit 
similarity between NSE and ADE, we derive the approximate solution of NSE using the analytical solution of ADE. 
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1. Introduction 

Navier-Stokes Equation (NSE) is well known as 
fundamental one in Fluid Mechanics1. Because the exact 
analytical solution of NSE is not yet obtained, we have 
to use numerical computation for the solution under the 
arbitrary initial and boundary conditions.  
For the numerical computation method, Difference 
Method, Finite Element Method and Boundary Element 
Method are well known. However, as for the Difference 

Method, it tends to be difficult to deal with complicated 
boundary conditions. In addition, the method has to 
satisfy the well-known Courant condition to obtain the 
stable computation solution.  
On the other hand, the Finite Element Method takes 
much time to solve simultaneous equations appeared in 
the method, and the Boundary Element Method has a 
problem in the computation precision for the analysis of 
viscous flow of high Reynolds number.  
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Even if we obtain the result by using such numerical 
computations, those methods take much time and the 
results are involved by not a little computation error.  
So, in order to reach the more accurate solution, it 
would be desirable to have an analytical approximate 
solution that is as much as close to the exact one.  
In order to obtain such an analytical approximate 
solution, we focus on the similarity between the NSE 
and Advection Diffusion Equation (ADE). And, we 
derive the exact analytical solution of the ADE over 
uniform flow field (or velocity field) in three 
dimensional (3D) boundless region under arbitrary 
initial condition2-4.  
Moreover, we derive the highly accurate approximate 
solution of NSE, using the solution of ADE. 

2. Advection Diffusion Equation (ADE) 

Let C  be a fluid of density (or density of material), and 
let zyx DDD ,,  denote the diffusion coefficient in 

zyx ,, axis direction, respectively. Similarly, let wvu ,,  
denote the flow velocity in zyx ,, axis direction, 
respectively. Moreover, let λ  and Q  be the attenuation 
coefficient that is spatially uniform and the load 
generation rate function, respectively.  
The partial differential equation of the ADE is shown as 
Eq.(1).  
 
 
 
 
 

…(1) 
 
Here we introduce the Dirac’s δ  function as in the 
following (2). 
 
 
 
 
 
 

…(2) 
 
The initial condition and the load generation rate 
function are shown in Eq.(3) and Eq.(4), respectively. 
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For the Eq.(1), we have the exact analytical solution5 as 
follows. 
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…(5) 

3. Checking the exact analytical solution of the 
ADE 

In Eq.(1), let DDDD zyx === . Using the following 
notation in (6), the Eq.(1) can be represented as Eq.(7). 
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Let ),,( zyxp =r , ),,( ζηξ=r , where pr  means the 
position at the present time point and r  means the 
general position at the past time point, respectively. 
Using the vector notation, Eq.(5) can be represented as 
shown in Eq.(8). 
 
 
 
 
 
 
 
 
where ),,( wvu=v , )(2 τσ −= τD , 
 

…(8) 
 
 
 
In order to check the exact analytical solution of the 
ADE, we substitute Eq.(5) for Eq.(7). First, we use the 

t∆  as shown in Eq.(9). 
 

τ−=∆ ττ                                                  …(9) 
 
Then, K  and σ  in Eq.(8) can be written as follows. 
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Using Eq. (10), we take the derivative of Eq. (10) with 
respect to t as shown Eq.(11). 
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When we take the derivative of Eq.(8) with respect to t  , 
we only differentiate the Green function (Eq. (8)). 
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Taking the derivative of left hand side (LHS) in Eq.(7) 
and using the Eq.(12), we have the Eq.(13). 
Next, when we take the derivative of Eq.(8) with respect 
to x , we only have to differentiate the Green function 
in Eq.(8). 
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where yx means the inner product of two vectors x  
and y . And,  
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The first derivative of the Green function is as follows. 
 

























−

−−

−








−−−=

∂
∂

∫
∫

∫
t

t

t

ds
ds

udsxK

tzyxG
x

t

t

t

λ
s

x
s

tzηx

2

2

2 2
exp

),,,,,,,(

vrrp

 

…(14) 
And, the second derivative is obtained as follows. 
 

























−

−−

−




















−−−−=

∂
∂

∫
∫ D

ds
udsxK

tzyxG
x

t

t

22
exp11

),,,,,,,(

2

2

2

2

22

2

2

λs
s

x
ss

tzηx

t

t

vrrp

 

…(15) 
Then, from Eq.(14) and Eq.(15), we have the following 
Eq.(16) and Eq.(17), respectively. 
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In the same way as above, the derivative of the C with 
respect to y and z can be obtained respectively. 
Therefore, the right hand side (RHS) of Eq.(7) is 
represented as Eq.(18). 
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Because Eq.(13) (LHS of Eq.(7)) equals Eq.(18) (RHS 
of Eq.(7)), we have proved that the Eq.(5) is the exact 
analytical solution of the ADE (Eq.(7)). 
 

4. Navier-Stokes Equation (NSE) 

We consider that the NSE shows a Law of conservation 
of momentum with respect to ),,( zyxivi =ρ  and that 
NSE is a kind of Advection Diffusion Equation (ADE) 
with respect to the momentum. 
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where ρ , v , µ , p , f are density, velocity, coefficient 
of viscosity, pressure, and external force, respectively. 
 
In NSE (Eq.(19)), putting ρµ k= where k  is coefficient 
of kinematic viscosity, we have 
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Eq.(7) and Eq.(20), respectively, as follows. 
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Since the term Cλ− in Eq.(7) is attenuation one, we let 
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relation.  
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If we regard that the v  is a constant vector during 
infinitesimal time, we can obtain the highly accurate 
approximate solution of NSE by applying the solution 
of ADE based on the aforementioned corresponding 
relation. 
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This means the velocity (or momentum) at the point 

),,( zyxp =r is decided by taking the diffusion of the 
momentum from the surrounding points that can be 
computed by the convolution of the Green function 
(Fig.1). 
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Fig.1. The situation of receiving the momentum (or 
velocity) diffusion from the surrounding points decided 
by the past time velocity (or momentum). 
 
 

5. Checking the analytical approximate solution of 
the NSE 

By substituting the Eq.(25) for v in Eq.(24), we can 
check whether the Eq.(25) is the analytical approximate 
solution of the NSE or not, in the same way as the check 
of the exact analytical solution of the ADE. 
The LHS of Eq.(24) is shown as follows. 
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And, we can show that the RHS of Eq.(24) becomes 
entirely the same as above LHS of Eq.(24). 
Then, we consider that Eq.(25) is a highly accurate 
approximate solution of the NSE. 
 
 

 
 

6. Conclusion 
In this paper, we have focused on the similarity between 
the Navier-Stokes Equation (NSE) and Advection 
Diffusion Equation (ADE). Then, we have described the 
explicit similarity of them and pointed out the 
corresponding term between both equations.  
Moreover, based on the viewpoint that NSE is a kind of 
advection (or convection) diffusion equation of 
momentum, we have derived an approximate solution of 
NSE by applying the exact analytical solution of the 
ADE to the NSE.  
Although this solution can be regarded as an 
approximation, we consider that it is a highly accurate 
approximation that can be remarkably close to the exact 
analytical solution of NSE. 
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