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Abstract  

This paper presents a new Type-2 Fuzzy 
Classifier ensemble, which enables to 
model parameter uncertainties by charac-
terizing the fuzzy sets with secondary 
membership values. We use fuzzy clus-
tering method to characterize primary 
membership values and genetic algorithm 
to approximate secondary membership 
grades. Furthermore, a weighing algo-
rithm is used for a non-complex reduction 
for reasoning. We use transductive rea-
soning, instead of inductive reasoning, to 
develop a local model for every new vec-
tor, based on a nearness criterion vectors 
from the given database. It is shown that 
the method can improve classifier system 
modeling performance in comparison to 
well-known methods.  

Keywords: type-2 fuzzy sets, classifier 
ensembles, fuzzy c-classification. 

1. Introduction 

The concept of type-2 fuzzy set (T2FS) 
was introduced by Zadeh [1] as an exten-
sion of type-1 fuzzy set to identify the 
uncertainties present in fuzzy systems. 
With fuzzy sets of higher type (e.g. type-
2), the fuzziness of relations is increased 
to handle inexact information. T2FSs are 
useful in situations, when it is difficult or 
uncertain to determine the exact MF of a 
fuzzy set, primary MFs [2], [3], [4]. In 
such cases, interval T2FS are defined (Fig. 

1) which identify the footprint-of-
uncertainty (FOU).  

Despite its success in modeling real 
systems under uncertainty [2]-[6], im-
plementation of type-2 fuzzy systems is 
not as easy as type-1 fuzzy systems due 
to complicated operations of T2FSs, 
mainly type-reduction.  In addition char-
acterizing secondary membership grades 
is a difficult task. 

  
Fig. 1: Footprint-of-uncertainty of Fuzzy Set. 

Each membership function (MF) value is 
characterized with embedded type-1 fuzzy set. 

 
To overcome some of the challenges of 

type-2 fuzzy system computations, in this 
paper, we propose a practical approach 
for classification problems. We initially 
build fuzzy classifier ensembles (multiple 
classifiers) by fuzzy partitioning the 
given dataset using a Fuzzy c-Classifier 
(FCC) method and obtain as many dis-
criminant functions for each partition. 
The level of fuzziness parameter, m, of 
fuzzy clustering methods, which deter-
mine the degree of overlap of clusters, viz. 
structures, granules, etc., is used in many 
different research to identify the FOU of 
MFs [2],[5]-[6]. In an analogical manner, 
we identify the FOU of MFs using the 
FCC for discrete values of the fuzziness 
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parameter mr>1, r=1..nm and identify as 
many discriminant functions fi,nm(x), 
i=1…c: for each cluster i. Each discrete 
mr characterizes a fuzzy classifier model 
and identifies the interval valued MFs for 
each ensemble model. 

We identify the optimum secondary MF 
grades, i.e., weights, of the primary MF 
grades obtained from the FCC models 
using genetic algorithms. New data vec-
tors adopt the secondary MF grades ob-
tained from the training samples in their 
neighborhood. During genetic learning 
process, each individual in the population 
encodes these weights for each training 
vector for each cluster, separately. This is 
quite a cumbersome process when the 
number of training vectors is large; there-
fore we implemented the transductive 
learning method [12]. Instead of learning 
the secondary MF grades of the entire 
training dataset, a new set of weights are 
learnt for each new data point from fairly 
few training vectors, which are in vicinity 
of the corresponding new vector.  

We applied the new fuzzy modeling 
tool as the answer selection module of the 
whole Question and Answering (QA) sys-
tem[7], in which the aim is to find precise 
answers to natural language questions 
from large document collections. We 
want to retrieve candidate answers and 
rank them based on a textual entailment 
model. An entailment relation between 
two text snippets (text-hypothesis pair) is 
produced when the hypothesis’ meaning 
can be inferred from the text’s.  

We first convert the question query into 
a regular sentence (hypothesis-h) and 
then use textual entailment module to 
identify if the candidate sentence (text-t) 
entails h. Given the text and hypothesis: 

t:Harry was born in Iowa. 
h:Harry’s birthplace is Iowa. 

t entails h, otherwise we recognize the 
relation between the meaning of the texts 
as false entailment. We implement the 
proposed type-2 fuzzy classifier ensemble 

to build an entailment module for Ques-
tion/Answering system and show that it 
could be an alternative method to well-
known classifier methods. 

2. Type-2 Fuzzy Classifier Ensembles  

The T2FC is a type-2 fuzzy inference sys-
tem akin to Takagi-Sugeno type inference 
systems and yet identifies one member-
ship function for the entire antecedent 
part. We assume that the membership 
functions of each input variable are not 
independent, and their interactive affect 
should be analyzed instead of their indi-
vidual effect. The secondary membership 
values are optimized with genetic algo-
rithms. The first step of T2FC is to fuzzy 
partition the entire dataset into overlap-
ping classifiers using the Fuzzy C-
Classifier (FCC) algorithm akin to the 
fuzzy c-regression clustering method [8].  

Let fi be a function of nv dimensional 
feature vectors xk(xk,1 …xk,nv)X, k=1,..,n 
data points with binary class labels, 
l(xk){0,1}. Each cluster i=1…c is repre-
sented with a discriminant function by:   

( ) ( )
, ( ( ) | )k kx x e 1+ei k i kf x f x

i kp l  , 

0, , ,( ) , 1...i i j i j kjf x i c   kx     (1) 

The pi,k(l(xk)=1xk) is the posterior prob-
ability for class l(xk)=1 given xk.  

Step 1: Assign c-classifier functions fi 
as initial cluster representatives. For each 
iteration t: 

Step 2: Calculate the cn membership 
matrix ui,kU(t)

 , ui,k[0,1] as follows: 
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The closer posterior probability to the 
actual class label, the less error will be.  

Step 3: If  ||U(t)-U(t-1)||ε, then stop; oth-
erwise go to step 4. 

Step 4: Using the weighted logistic re-
gression method, calculate the new clus-
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ter representatives for the (t+1)th iteration, 
i

(t+1)=(xTwix)'xTwiadjy, where wi denote 
the diagonal matrix of nn  having 
uk,i

(t)Ui
(t) as kth diagonal elements. The 

adjy= (xwi)+[(y-fi)/fi'] is the Taylor ex-
pansion of the log-likelihood of the poste-
rior probabilities pi,k [9].  

3.1. T2FC Secondary MF grades 

The membership values ui,k in (2) de-
pends on the level of fuzziness parameter, 
m(1,), which determines the fuzziness 
of the resulting clusters. T2FC performs 
the following learning algorithm:  
Execute FCC Metdod. To identify FOU 
of T2FS, the FCC is executed for differ-
ent levels of fuzziness, mr={m1… mr}, 
r=1…nm, given the number of clusters, c. 
Each FCC model is characterized with 
each discrete mr value and identifies clas-
sifier function fi

r(x,i
r) for each cluster, 

i=1…c to obtain membership function 
values MFi

r(x)=ui
r(x) and posterior prob-

abilities pi
r(l(xk)|xk,i

r).  
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Fig. 2: Type-2 Fuzzy set --Secondary mem-

bership values of x in cluster i based on each 
discrete fuzziness parameter mr.  

 
Initialize Secondary T2FSs. Each possi-
ble discrete membership value ui

r(x') 
r=1…nm is randomly assigned initial 
weights, viz., secondary MF grades 
i,k

r(Ã;xk)[0,1], k=1…n. (Fig. 2), since 
we don’t have prior information what 
their values would be beforehand. These 
MF grades denote possibilities associated 
with each mr at each value of x, xk=x.  
Genetic Learning Process (GLP). Opti- 
mum values of the secondary MF grades 
of T2FSs at each xk is identified based on 

genetic learning process. At this point, 
transductive learning algorithm is imple-
mented to estimate the secondary mem-
bership values of data vectors. 
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Fig. 3: A chromosome for xk=x. 
 

When a new vector x is introduced, a 
new model is build to estimate its output. 
The secondary MFs of x in each cluster 
is estimated using nk nearest neighbors 
from training dataset, which form a sam-
ple dataset xjXj={x1…xnk}. Each chro-
mosome of x is encoded using initial 
weights of each nk training vectors, one 
for each discrete mr value for each cluster. 
In Fig. 3 xk,j, j=1..nk, represents each 
nearest vector to the selected xk=x vector 
and T2FSi  represents T2FS of the jth 
nearest train-vector in cluster i=1..c.  
Each T2FSi is identified by set of ui,j

r(xj)’s 
calculated by each mr (Fig. 3). Herein, a 
genetic algorithm is used to optimize the 
secondary MF grades of nearest nk vec-
tors instead of the entire training dataset. 
A separate genetic learning method is 
executed for each new x as follows:  
Step-1 Initialize each chromosome in the 
population randomly and start iterating; 
Step-2(i) Update secondary MF grades of 
each chromosome (Fig. 3) using mutation 
and crossover operations.  
Step-2.(ii) For each chromosome, chr, 
calculate weighted posterior probabilities 
of each nearest train vector xk,j as follows: 
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 (4) 

Step-2.(iii) Calculate performance index 
(PI) of each chromosome from each near-
est training vector xk,j, j=1..nk  
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Step-2.(iv) Choose surviving individuals 
based on (argchr max PIchr) and go to 
Step-2.(i) if termination condition is not 
satisfied which is either when the total 
number of iterations is reached or when 
there is no change in performances.  

During GLP nm different secondary MF 
grades i,j

r are identified for each discrete 
primary MF grade ui,j

r(xj), r=1…nm, of 
each nearest training vector xj of x .  

3.2. GT2FI Reasoning 

We use the weighing formula of equation 
(4), to estimate the posterior probability 
of a particular vector x using T2FC sys-
tem. Firstly, the primary MF grades, ui

r(x) 
for each mr value is calculated using 
equation (2). Since we do not know the 
actual label of x, we use actual class la-
bels of the vectors in the vicinity of x, xj. 
j=1…nk. To find the secondary MF 
grades, the weights of these nearest train-
ing vectors obtained from the GLP step 
are used. To calculate ui

r(x) for each 
m=mr using (2), we need the error values 
which we have no prior information, 
therefore, we use the error values of each 
xj in each local model �i,j

r(xj). The secon-
dary MF grades of nearest train vectors 
obtained from GLP are used to calculate 
one posterior probability value pj' for the 
x using (4). The implication and aggrega-
tion operators are combined in one step 
and thus the type of the MF is reduced 
down to type-1 first by using model 
weights captured in GLP step and then 

the fuzzy output probability pi,j is further 
reduced down to type-0 to obtain a single 
possibility value pj(x) using each nearest 
vector, xj. To calculate a single crisp 
probability value for x, p(x) the posterior 
probabilities of the nearest training points 
xj j=1..nk, are weighed based on inverse 
distance between x . A sample output of 
the new T2FC using an artificial dataset 
is shown in Fig. 4.  

3. Experiments on Text Entailment  

We applied the proposed T2FC method 
on Textual Entailment datasets (freely 
available from PASCAL recognizing tex-
tual entailment (RTE) conference). The 
goal is to recognize semantic inference 
that a textual entailment defines direc-
tional relation between two text frag-
ments, called text (T) and hypothesis (H) 
so that a human being can infer that H is 
most likely true on the basis of T. 

3.1. Dataset 

We combined different RTE datasets and 
only used the T-H pairs that are specifi-
cally designed for QA tasks. We ex-
tracted different sets of attributes from 
the T-H pairs (see Table 1) and to gener-
ate some of these features, we used dif-
ferent tools including Stanford Tagger, 
Named Entity Tagger,  Word-
Net::Similarity Package. 
Each (T-H) pair is analyzed to extract the 
features which depend on the relation be-
tween them. Some of these features are:

 
Fig. 4: (left) Artificial Dataset, (middle) FOU by m[1.1, 2.6], (right) secondary MF of x=8.4. 
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Table 1: Examples of Text-Hypothesis pairs 
from Recognizing Text Entailment Challenge. 
Example Pairs 
False Entailment 
T: In February 2002, President Bush visited China 
to mark the 30th anniversary of Nixon's historic trip.
H: Nixon visited China in February 2002. 
True Entailment 
T: Chernobyl nuclear-power plant is in Ukraine, but 
the reactor that exploded during the night of April 
26, 1986, is 10 miles from the Belarusian border. 
H: The Chernobyl disaster took place on the 26th of 
April, 1986. 

 
Lexico-Syntactic Overlap-Alignment 

Features: These features range from the 
ratio of the consecutive word overlap be-
tween the T and H (n-gram, i.e., 
n{1,2,3}), the lowest common subse-
quence which measures the similarity be-
tween text T with length m and hypothe-
sis H with length n, by searching in-
sequence matches that reflect sentence 
level word order. We extracted these fea-
tures for words and word-phrases, which 
are compounds of words.  

Semantic Features: Noun, verb and 
adjective/adverb specific semantic over-
lap metric (similarity measure) using 
WordNet hypernym, hyponym, negation 
match between T-H based on clue 
phrases such as no-not neither, etc. are 
some of the examples of the features ex-
tracted from T-H pairs.  

We created train and testing datasets us-
ing the T-H pairs from RTE challenge 
and extracted features as explained above 
which forms the inputs and for the binary 
output variable, 1 for “true entailment” 
and 0 for “false entailment” are assigned. 
We extracted 29 features using different 
combinations of the above features.  

There were 2167 T-H pairs for building 
the learning models--training and 2400 
pairs separated for testing purposes. Only 
484 of the training pairs are QA based T-
H pairs and consequently 526 of the test-
ing ones are only created from QA based 
approaches. False and true entailments 
are evenly distributed. 

3.2. Model Construction 

The system model performance is 
measured with accuracy. To analyze the 
performance of the new system, the accu-
racy results of T2FC models are com-
pared to well-known Adaptive Network 
Based Fuzzy Inference System (ANFIS) 
[10] which represents a hybrid type-1 
fuzzy inference system, and support vec-
tor machines (SVM) [11] for classifica-
tion, which is commonly used to build 
text entailment classification models.  

 
Table 2: Parameters of benchmark tools.  

Opt. Parameters  
ANFIS: Hybrid method to optimize inference 

parameters, Gaussian MFs, TSK rule base 

structure. 
SVM-LIN: Creg[2-3,27], Linear kernel func-

tion,  K(xk,xj)= xk 
Txk 

SVM-RBF: Creg[2-3,27], Non-linear Gaussian 

radial basis kernel, K(xk,xj)=exp(-||xk-xj||), >0 

 
For the FCC clustering of T2FCC, we 

set the boundaries of the level of fuzzi-
ness parameter between mlower=1.4 and 
mupper=2.6, which was proven to be min-
max boundaries of the level of fuzziness 
parameter of the fuzzy c-models [15]. 
The m interval is discretisized into 10 
values. The secondary MF values of 
nearest data points are optimized with 
genetic algorithms. For the genetic learn-
ing process, the initial population size and 
number of iterations are set to 100 each, 
and the number of clusters is set to 3. The 
crossover rate is set at 0.8 and the muta-
tion rate is set at 0.01. Tournament selec-
tion with eliticist strategy is employed. 
The learning parameters of the rest of the 
methods are shown in Table 2.  

The accuracy results of the experiments 
are shown in Table 3. The highest accu-
racy is obtained with the proposed T2FC 
method with 9% improvement on the 
testing cases. Since the T2FC is based on 
transductive learning, where a separate 
model for each testing case is build using 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                5



the nearing training cases for learning, 
training accuracy is not measured.  
Table 3: Accuracy results of the Text Entail-

ment for QA tasks.  
Model Train Dataset Testing Dataset

ANFIS 0.694 0.500 

SVM-LIN 0.655 0.549 

SVM-RBF 0.647 0.555 

T2FC N/A 0.607 
 

On of the challenges of T2FC is that the 
reasoning takes a longer time compared 
to the rest of the models since, for T2FC, 
for each new observed data, a new model 
is build. Hence, in the future we plan to 
build offline models as a consequence of 
the T2FC by using weighted models ob-
tained from different training cases. Tex-
tual entailment task is a challenging prob-
lem and the accuracy of the outcome can 
be improved should other state-of-the-art 
NLP tools and semantic approach are 
used. This is left out as a future study. 

4. Conclusions 

In this paper, a type-2 fuzzy classifier en-
semble system is introduced for binary 
classification domains. Unlike counter-
parts, local structures are characterized 
with discriminant functions to identify 
multiple-overlapping classifier models 
within the given structure. The uncer-
tainty interval of primary membership 
functions (MF) are defined based on up-
per and lower limits of  the level of fuzzi-
ness parameter of fuzzy c-classification 
method. The secondary MF grades are 
optimized with genetic algorithms. With 
the implementation of transductive learn-
ing method, a new model is constructed 
with only the training vectors in the vicin-
ity of each new test vector. The algorithm 
adopts simple type-reduction and does 
not require defuzzification.  
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