
Journal of Nonlinear Mathematical Physics Volume 15, Supplement 3 (2008), 396–406 ARTICLE

The Point of Maximum Curvature as a Marker for
Physiological Time Series

James Robert Stirlinga and Maria Zakynthinakib,a

a Facultad de Ciencias de la Actividad Fı́sica y del Deporte, Universidad Politécnica de Madrid,
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Abstract

We present a geometric analysis of the model of Stirling et al. [14]. In particular we analyze
the curvature of a heart rate time series in response to a steplike increment in the exercise
intensity. We present solutions for the point of maximum curvature which can be used as a
marker of physiological interest. This marker defines the point after which the heart rate no
longer continues to rapidly rise and instead follows eithera steady state or slow rise. These
methods are then applied to find analytic solutions for a monoexponential model which is
commonly used in the literature to model the response to a moderate exercise intensity. Nu-
merical solutions are then found for the full model and parameter values presented in Stirling
et al. [14].

1 Introduction

In this paper we investigate geometric features of the modelof heart rate kinetics in response to
exercise developed by Stirling et al. [14] (see also Stirling et al. [17, 15], Zakynthinaki and Stirling
[25] and Zakynthinaki et al. [24, 23]). We aim to find a featureof the curve corresponding to the
heart rate time series in response to exercise which can be found using rigorous mathematical
techniques and which can act as a marker. The term marker is used to mean a point on the curve
which marks the transition from one response to another. Such concepts are standard in exercise
physiology and medicine [19]. By tracking changes in the marker for different exercise loads or
following changes in an individuals level of fitness, important physiological information can be
obtained [1, 5, 12]. In this paper we use the point of maximum curvature as a marker for the
heart rate kinetics in response to step function like increases in the exercise intensity. In particular
we find analytic solutions for the point of maximum curvaturefor short term moderate exercise
intensities were the heart rate reaches a plateau. We also find numerical solutions for short term
slightly higher exercise intensities where the heart rate no longer plateaus but instead continues to
rise slowly (i.e. in the case of the so called slow component).
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The point of maximum curvature provides physiologists witha means of finding the time and
heart rate for which we move from an steeply rising function to a plateau or slowly rising function
(as in the slow component). Our method works with both the mono-exponential model used in
the literature and the coupled ordinary differential equation model we introduced in Stirling et al.
[14] (see also Zakynthinaki and Stirling [25], Zakynthinaki et al. [23] and Stirling et al.[17, 15]).
It should be noted that in general for the model of Stirling etal. [14] (see also Zakynthinaki and
Stirling [25], Zakynthinaki et al. [23] and Stirling et al.[17, 15]) there is no rate constantτ as it is
not an exponential model.

In section 2.3 we define the curvature,k and show how to calculate the point of maximum
curvature in thet direction by solving for the derivativedk

dt = 0. Here however we introduce why
the point of maximum curvature if of interest physiologically. The point of maximum curvature
occurs when the rate of change, as one moves along the curve for the heart rate time series, of
the tangential angleφ to thehr(t) time series is a maximum. In a correctly scaled graph of the
heart rate time series this would mark the point when there isa change from a rapidly increasing
function ofhr to a slowly increasing or steady state function, see figure 1.As a result knowledge
of this point both in terms of heart rate and time give us fundamental physiological important
information about the kinetics. In particular it will allowus to know how long it takes for the body
to stabilize or at least slow its reaction to a specific demand. It will also allows us to calculate
after what percentage of the demand the kinetics ceases to bea rapidly increasing function. It
should be remembered that the rapidly increasing response and the slowly increasing or steady
state response represent important differences at the physiological level and as such the point of
maximum curvature allows us to differentiate between the two.

Figure 1. Showing the point of maximum curvatureK1 andK2 for two heart rate time series, one which
has a plateau and one which shows slow component behavior.

In the following section we first present the model and then goon to calculate the curvature and
point of maximum curvature. This is followed by an analytic solution for the point of maximum
curvature for a physiologically interesting case. We then present numerical solutions based on data
presented in Stirling et al. [14] and Zakynthinaki and Stirling [25]. We finish with mathematical
and physiological conclusions.
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2 The model and how to find the point of maximum curvature

2.1 Model and the normalized version

We defineHR(V,T) to be the function that describes the heart rate response to an exercise of
intensityV for time T. In Stirling et al. [14] (see also Stirling et al. [17, 15] andZakynthinaki
and Stirling [25]) the following equations are used to modelthe heart rate kinetics for the case
where the exercise intensityV is a constant. These equations are similar to those used in other
applications by the same authors [21, 20, 18, 16].

d
dT

HR(V,T) = Ã

[

HR(V,T)−HRmin

]B[

HRmax−HR(V,T)

]C[

D̃(V)−HR(V,T)

]E

(2.1)

d
dT

V = 0 (2.2)

where the functioñD(V,T) denotes the heart rate demand and the parametersÃ,B,C,E control the
shape of the curve (see [14, 17] for more details).

Parameter̃A has dimensions of(beats/min)1−B−C−Emin−1 whilst parametersB,C andE are
dimensionless. The variables are written in upper case to denote their non normalized state. For
this paper we make the usual approximation in exercise physiology that the heart rate demand
D̃(V) is a constant for a particular constant exercise intensityV and hence is not a function of
time for the short term and sufficiently low exercise intensities that we considered here. It should
be noted that longer term, even moderate, exercise raises body temperature producing body fluid
shifts and losses that lead to a gradual increase in the heartrate demandD̃(V) as a function of
time.

In what follows hr(v, t) will refer to the normalized version of the heart rate such that 0≤
hr(v, t) ≤ 1. The normalized variablehr(v, t) is derived from equation 2.1 as follows

hr(V,T) =
HR(V,T)−HRmin

HRmax−HRmin
(2.3)

The variablet will refer to the normalized timet = T
tp

, where we definetp as the time to achieve

a heart rate equal toHR(tp) = HRmin + 0.95(HRmax−HRmin) for a demandD(V) = HRmax and
initial resting condition which we standardize in this paper to be such thatHR(0) = 70 beats/min.
This value oftp is obtained numerically from our model once the parameters have been fit, by
solving for the time,tp to achieveHR(tp). It should also be noted that all graphs are plotted from
t = 0→ tp so not to add confusion due to the scale of the graph. The function D(v) corresponds
to the normalized demand. Equation (2.1) hence takes the normalized form

d
dt

hr(v, t) = tpA

[

hr(v, t)

]B[

1−hr(v, t)

]C[

D(v)−hr(v, t)

]E

(2.4)

which is the equation we will be working with what follows. The normalized parameterA is

A≡ Ã(hrmax−hrmin)
B+C+E−1, (2.5)

Ã,B,C andE are as in the non-normalized case.
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2.2 The derivativesdhr(v,t)
dt , d2hr(v,t)

dt2 and d3hr(v,t)
dt3

Equation 2.1 gives the first derivative of the heart rate withrespect to time,dhr(t)
dt . The second

derivative is

d2hr(v, t)
dt2

=

(

dhr(v, t)
dt

)2[

Bhr(v, t)−1−C(1−hr(v, t))−1−E(D(v)−hr(v, t))−1
]

(2.6)

which we write as

d2hr(v, t)
dt2

=
(dhr(v,t)

dt )2

hr(v, t)(1−hr(v, t))(D(v)−hr(v, t))

[

γ(v, t)

]

(2.7)

where

γ(v, t) = B

(

1−hr(v, t)

)(

D(v)−hr(v, t)

)

−Chr(v, t)

(

D(v)−hr(v, t)

)

−

−Ehr(v, t)

(

1−hr(v, t)

)

. (2.8)

It should be remembered that as we assume that the demand is not a function of time then
dD(v)

dt = 0 andd2D(v)
dt2 = 0. The third derivative is now found to be

d3hr(v, t)
dt3

=

(

dhr(v, t)
dt

)3(

2

[

B(hr(v, t))−1−C(1−hr(v, t))−1−E(D(v)−hr(v, t))−1
]2

−

−Bhr(v, t)−2−C(1−hr(v, t))−2−E(D(v)−hr(v, t))−2
)

(2.9)

which we write as

d3hr(v, t)
dt3

=
(dhr(v,t)

dt )3

hr(v, t)2(1−hr(v, t))2(D(v)−hr(v, t))2

[

2γ(v, t)2 + θ(v, t)

]

(2.10)

where

θ(v, t) = −B

(

1−hr(v, t)

)2(

D(v)−hr(v, t)

)2

−Chr(v, t)2
(

D(v)−hr(v, t)

)2

−

−Ehr(v, t)2
(

1−hr(v, t)

)2

. (2.11)

These derivatives can now be used to calculate the curvature, k and the point of maximum
curvature.
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2.3 Curvature and the point of maximum curvature

The curvaturek of a curve is defined ask≡
∣

∣

∣

dφ
ds

∣

∣

∣
, whereφ is the tangential angle ands is the arc

length. The curvaturek can be found as follows

k≡
∣

∣

∣

∣

dφ
ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

dφ
dt
ds
dt

∣

∣

∣

∣

∣

(2.12)

the arc lengthsof the heart rate time series in the normalized coordinate system now gives us

ds =
√

dt2 +dhr(v, t)2 (2.13)

therefore we have

ds
dt

=

√

1+

(

dhr(v, t)
dt

)2

. (2.14)

The tangential angleφ now gives us

tanφ =
dhr(v, t)

dt
⇒ d tanφ

dt
=

d2hr(v, t)
dt2

(2.15)

hence

d tanφ
dt

= (1+ tan2φ)
dφ
dt

(2.16)

using equations 2.15 and 2.16 we have

dφ
dt

=
d2hr(v, t)

dt2
1

1+ tan2 φ
=

d2hr(v,t)
dt2

1+

(

dhr(v,t)
dt

)2 (2.17)

Using 2.14 and 2.17 the curvaturek is now

k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

d2hr(v,t)
dt2

[

1+
(

dhr(v,t)
dt

)2
]

3
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.18)

Using equations 2.1, 2.8 and 2.11 equations 2.18 can be expressed only in terms ofhr(v, t).
Note only for the follow equation 2.19 we drop the part(v, t) to condense the formula.
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k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

tp
2A2hr2B(1−hr)2C(D−hr)2E

[

B(1−hr)(D−hr)−Chr(D−hr)−Ehr(1−hr)

]

hr(1−hr)(D−hr)

[

1+ t2
pA2hr2B(1−hr)2C(D−hr)2E

]
3
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(2.19)

Maxima or minima of the curvature in thet direction can therefore be found via the derivative
of equation 2.18 (or 2.19) with respect tot, when dk

dt = 0. For dk
dt = 0 then assumingdhr(v,t)

dt 6= ∞
we have

d3hr(v, t)
dt3

[

1+

(

dhr(v, t)
dt

)2]

−3

(

d2hr(v, t)
dt2

)2 dhr(v, t)
dt

= 0 (2.20)

substituting equations 2.7 and 2.10 we now havedhr(v,t)
dt = 0 or

(

dhr(v, t)
dt

)2

(θ(v, t)− γ(v, t)2)+2γ(v, t)2 + θ(v, t) = 0 (2.21)

3 Special solutions for the maximum curvature: the case ofE = 1,
B = C = 0 and A 6= 0

For these parameter values the model is in its most basic formwith no ability to produce slow
kinetics [22, 7, 11, 2, 3] either during exercise or recovery. This form of the equations however
is of interest as it has been recognized since 1923 in a paper by Hill and Lupton [9] that such
physiological signals rise approximately exponentially following the onset of an exercise of mod-
erate intensity. More recently the mono-exponential givenin equations 3.3 has been used to model
heart rate [11, 8, 4, 6] and oxygen uptake kinetics in response to sufficiently low exercise intensi-
ties [22, 7, 11, 2, 13, 10]. An independent time delay is oftenused with these models to ensure the
data is fit most optimally. The analytic solutions are valid for short term moderate intensities only.

The equation

dhr
dt

= tpA(D−hr(t)) (3.1)

(3.2)

has the following general solution

hr = hr(0)+ [D−hr(0)](1−e−tpAt). (3.3)

wherehr(0) is the initial value ofhr for t = 0 andD is the constant demand. The second derivative
is given by

d2hr
dt2

= −t2
pA2(D−hr(t)) (3.4)
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This gives

k =

∣

∣

∣

∣

∣

∣

−t2
pA2(D−hr(t))

(

1+ t2
pA2[D−hr(t)]2

)
3
2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−t2
pA2(D−hr(0))e−tpAt

(

1+ t2
pA2[D−hr(0)]2e−2tpAt

)
3
2

∣

∣

∣

∣

∣

∣

(3.5)

ask≥ 0 then

k =
t2
pA2(D−hr(t))

(

1+ t2
pA2[D−hr(t)]2

)
3
2

=
t2
pA2(D−hr(0))e−tpAt

(

1+ t2
pA2[D−hr(0)]2e−2tpAt

)
3
2

(3.6)

hence

dk
dt

= −t2
pA2ḣr

[

1−2t2
pA2(D−hr(t))2

(1+ t2
pA2(D−hr(t))2)

5
2

]

, (3.7)

which implies that for the point of maximum curvature we musthave 1−2t2
pA2(D−hr(t))2 = 0,

as we are not interested in the solutionD−hr(t) = 0. The heart rate,hrkmax at which the maximum
curvature occurs is given by

hrkmax = D± 1

tpA
√

2
(3.8)

and the time at which this occurs is given by

tkmax = − 1
tpA

ln

(

1

tpA(D−hr(0))
√

2

)

(3.9)

Note that as expected by increasingA the point of maximum curvature occurs closer to the
demandD and does so in less time. Equations 3.8 and 3.9 can be rewritten in the non normalized
termsHRandT giving

HRkmax = HRmin+(HRmax−HRmin)

(

D± 1

tpA
√

2

)

Tkmax = − 1
A

ln

(

1

tpA(D−hr(0))
√

2

)

(3.10)

We choose, based on the data presented in Stirling et al [14] and Zakynthinaki and Stirling [25]
A = 0.045 andD = 0.7 for a value ofhr(0) = 0.2 andtp = 246s.

Using equations 3.8 and 3.9 we findhrkmax = 0.6361, tkmax = 0.1859 or in non normalized terms
HRkmax = 132 beats/min,Tkmax = 46 s,D = 142 beats/min. The point of maximum curvature can
be observed to equal to that seen in figure 1. It can also clearly be seen in figure 1 that the point of
maximum curvature is a good marker of the transition from a rapidly rising response to a steady
state.
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Figure 2. The point of maximum curvaturehrkmax = 0.6495,tkmax = 0.16375 for the mono-exponential.

4 Numerical solutions for the maximum curvature

We now study the numerical solutions for the maximum curvature using parameters found by
optimizing the fit of the model to a set of real heart rate data.We do so graphically as analytic
solutions for the general cases of physiological interest (i.e. E = 1 andA 6= B 6= C 6= 0) cannot be
found. The numerical analysis is valid for short term both moderate and slightly higher exercise
intensities, inclusive of the so called slow component typebehavior which as shown in Stirling et
al. [14] (see also Zakynthinaki and Stirling [25], Zakynthinaki et al. [23] and Stirling et al.[17, 15])
can be modelled using a constant demandD̃(V).

We use the optimal parameter values found in Stirling et al [14] and Zakynthinaki and Stirling
[25], these values were found using stochastic optimization (Zakynthinaki and Stirling [25] and
Zakynthinaki and Saridakis [26]). These values areA = 0.54,B = 1.63,C = 1.75 andE = 1. The
initial condition for the normalized heart rate ishr(0) = 0.2, this corresponds to a non-normalized
heart rate of 70 beats/min for an individual with minimum andmaximum heart rates equal to
HRmin = 40 beats/min andHRmax = 185 beats/min respectively. The valuesHRmax andHRmin

were obtained experimentally, with theHRmax being the maximum heart rate observed in com-
petition andHRmin being the minimum heart rate observed during an extended period of deep
relaxation. It should be noted that the value ofHRmin = 40 is low however it is physiologically
reasonable as the subject was a well trained marathon runnerand such values are not uncommon
amongst these athletes [12]. We estimate using the definition given in section 2.1 thattp = 246
seconds.

From figure 3 and table 1 we can see how the point of maximum curvature changes withD.
One of the interesting facts of physiological importance that can be observed in figure 3 and

table 1 is that the decrease intkmax with increasing demand is very small when compared to the
increase inhrkmax. This is showing that there is very little difference in the time it takes to reach the
point of maximum curvature for different demands given the same initial conditions, even though
there are large differences in the heart ratehrkmax.
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Figure 3. The point of maximum curvature for the 4 different demands shown in table 1.

Table 1. The point of maximum curvature, normalized and non normalized, for different demands.
D(v) hrkmax tkmax D(V)(beats/min) HRkmax(beats/min) Tkmax(s)

1 0.81 0.16 185 157 40
0.9 0.762 0.165 171 150 41
0.8 0.702 0.17 156 142 42
0.7 0.628 0.175 142 131 43

5 Conclusions

We show how to calculate the curvature and as a result the point of maximum curvature for the
model of the heart rate time series presented in Stirling et al. [14]. In particular we analyze the
curvature for the case of a heart rate response to a step like increment in the exercise intensityv.
For the analysis we present we make the usual assumption generally used in exercise physiology
that the demandD(v) is constant for a particular exercise intensityv of sufficiently short duration
and low intensity.

The point of maximum curvature is as a marker which defines, for a correctly scaled graph,
the point after which the heart rate changes from a rapidly increasing function to a steady state or
slowly increasing function.

Analytic solutions for both the heart ratehrkmax at which the curvature is maximum and the
time tkmax at which this occurs are presented for the case of a mono exponential model which
is commonly used in the literature to model the response to moderate exercise intensities. The
analytic solutions presented in section 3 are for exclusively short term moderate exercise.

Numerical solutions are also presented forhrkmax andtkmax for the model and optimal parameter
values presented in Stirling et al. [14]. The numerical analysis in section 4 is not just for short
term moderate exercise, but includes slightly higher non moderate short term exercise intensities
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(where the heart rate is≤ 185) for which we showed in the papers of Stirling et al. [14] (see also
Zakynthinaki and Stirling [25], Zakynthinaki et al. [23] and Stirling et al.[17, 15]) we can still
assume the demand to be constant. For higher exercise intensities where the demand is a function
of time see Zakynthinaki et al. [23]. A physiologically interesting observation was found for these
parameter values, which was that there was very little difference in the timetkmax after which we
changed from a steeply rising function to a slowly rising or steady state function, even though the
difference in the demandD(v) and alsohrkmax was large.
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